

# HETEROGENEOUS TREATMENT EFFECTS AND COUNTERFACTUAL POLICY TARGETING USING DEEP NEURAL NETWORKS

---

Rayhan Momin

January 2026

Available at [https://rmmomin.github.io/wp/Chapter\\_2\\_](https://rmmomin.github.io/wp/Chapter_2_)

## RESEARCH QUESTION

- The Federal Reserve introduced the corporate credit facilities (CCFs) in March 2020 in response to financial market disruptions.
- Did the CCFs achieve the Fed's objectives to boost real activity?
- If not, would extending eligibility to ineligible firms have improved outcomes?

## PREVIEW OF RESULTS

- Paper introduces a novel two-step semi-parametric difference-in-differences (DiD) estimator to compute dynamic (heterogeneous) treatment effects and assess counterfactual treatment effects.
  - Nonparametric terms estimated using deep neural networks.
- Results suggest that the CCFs may have failed to achieve the Fed's objectives to stimulate the real economy but may have supported payouts to shareholders.
- Counterfactual treatment effects from extending eligibility to B/BB firms provide mixed to inconclusive evidence for improved investment but stronger evidence for increased leverage and payouts.

## LITERATURE REVIEW

- COVID19 Papers:
  - Decline in bond spreads: Boyarchenko, Kovner, and Shachar (2022); D'Amico, Kurakula, and Lee (2020); Flanagan and Purnanandam (2020); Gilchrist et al. (2021); Haddad, Moreira, and Muir (2021); Kargar et al. (2021); Momin and Li (2025); O'Hara and Zhou (2021).
  - Record bond issuance: Becker and Benmelech (2021); Boyarchenko, Kovner, and Shachar (2022); Darmouni and Siani (2024); Dutordoir et al. (2024); Halling, Yu, and Zechner (2020); Hotchkiss, Nini, and Smith (2022).
  - Equity issuance: Dutordoir et al. (2024); Halling, Yu, and Zechner (2020); Hotchkiss, Nini, and Smith (2022).

## LITERATURE REVIEW

- COVID19 Papers:
  - Demand for cash: Acharya and Steffen (2020); Darmouni and Siani (2024); Pettenuzzo, Sabbatucci, and Timmermann (2023).
  - Credit line drawdowns: Acharya and Steffen (2020); Darmouni and Siani (2024); Greenwald, Krainer, and Paul (2023).
  - Financial constraints to investment: Barry et al. (2022), Brunnermeier and Krishnamurthy (2020).
- European Experience with CCFs:
  - Increased issuance, increased payouts, no investment response: De Santis and Zaghini (2021); Grosse-Rueschkamp, Steffen, and Streitz (2019); Todorov (2020).

## LITERATURE REVIEW

- Double/Debiased Machine Learning (DML) and Causal ML Papers:
  - DML: Belloni, Chernozhukov, and Hansen (2014), Chernozhukov et al. (2018).
  - Deep Net Estimation with Neyman Orthogonal Scores: Farrell, Liang, and Misra (2021a), Farrell, Liang, and Misra (2021b), Chronopoulos et al. (2023).
- Related DiD Estimators:
  - Doubly-robust DiD: Sant'Anna and Zhao (2020).
  - DML DiD (Partially Linear Model): Chang (2020).

## LITERATURE REVIEW

- DML and Causal ML Applications:
  - Empirical Asset Pricing: Feng, Giglio, and Xiu (2020), Maasoumi et al. (2024), Borri et al. (2024), Hansen and Siggaard (2024), Gomez-Gonzalez, Uribe, and Valencia (2024).
  - Empirical Corporate Finance: Bilgin (2023), De Marco and Limodio (2022), Movaghari, Tsoukas, and Vagenas-Nanos (2024), Wasserbacher and Spindler (2024), Yang, Chuang, and Kuan (2020).
  - Deep Nets: Kim and Nikolaev (2024a), Kim and Nikolaev (2024b).

## FED INTRODUCED CCFS TO SATISFY POLICY OBJECTIVES

March 23, 2020 press release:

*The PMCCF will allow companies access to credit so that they are better able to maintain business operations and capacity during the period of dislocations related to the pandemic.*

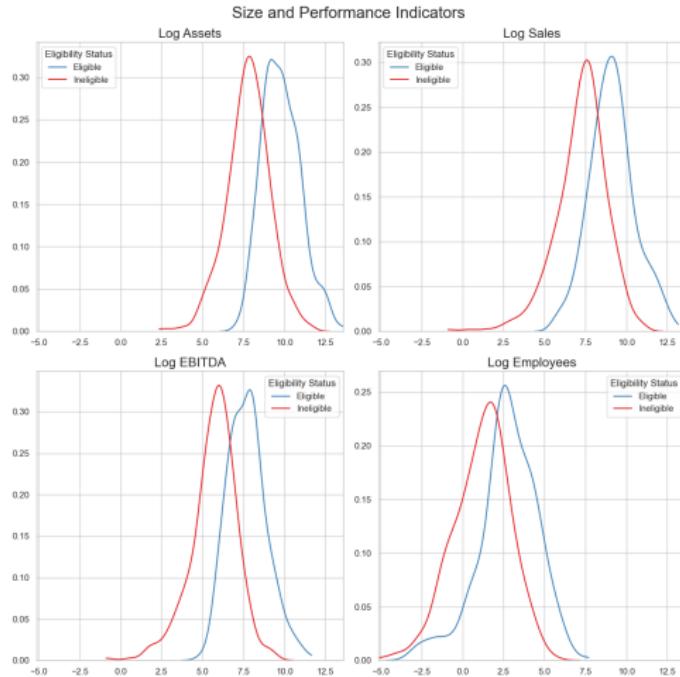
April 9, 2020 press release:

*Increase the flow of credit to households and businesses through capital markets, by expanding the size and scope of the Primary and Secondary Market Corporate Credit Facilities (PMCCF and SMCCF).*

## ELIGIBILITY CRITERIA AND ACTIVITY

- If rated by more than one rating agency, at least two IG issuer ratings. Otherwise, sole issuer rating must be IG.
  - Initially, eligibility lost if downgraded below threshold (i.e. for Fallen Angels).
  - Later, on April 9, 2020, eligibility preserved for Fallen Angels eligible as of March 22, 2020, if rated above BB-.
- Additionally, IG ETFs initially in scope for purchases, then expanded to HY ETFs.
- Facilities designed to support up to \$750 billion of financing, purchases of \$14 billion.
  - Despite limited purchases, substantial contingent support priced in by markets (Haddad, Moreira, and Muir 2025).

# ELIGIBLE ISSUERS ARE LARGER, WITH MORE SUBSTANTIAL CASH FLOWS

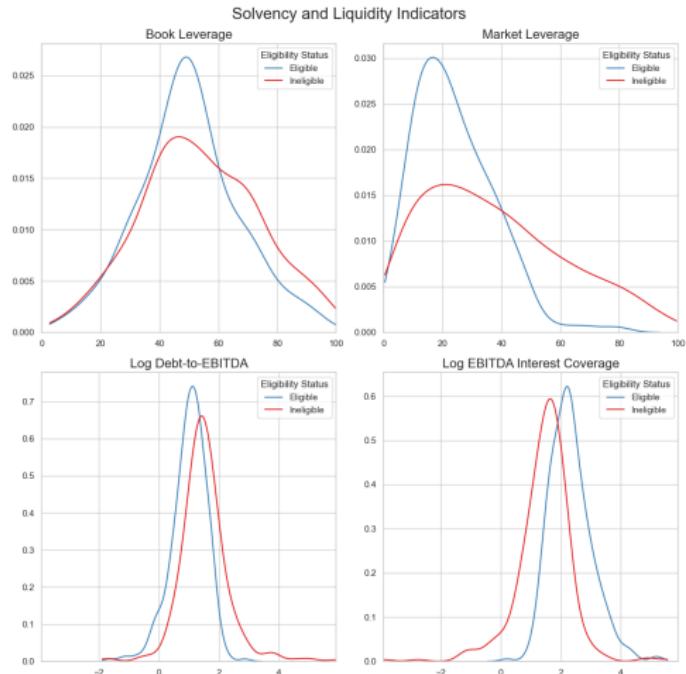


► Identification Assumptions

► Eligible

► Ineligible

# ELIGIBLE ISSUERS ARE ALSO MORE LIQUID WITH LOWER LEVERAGE

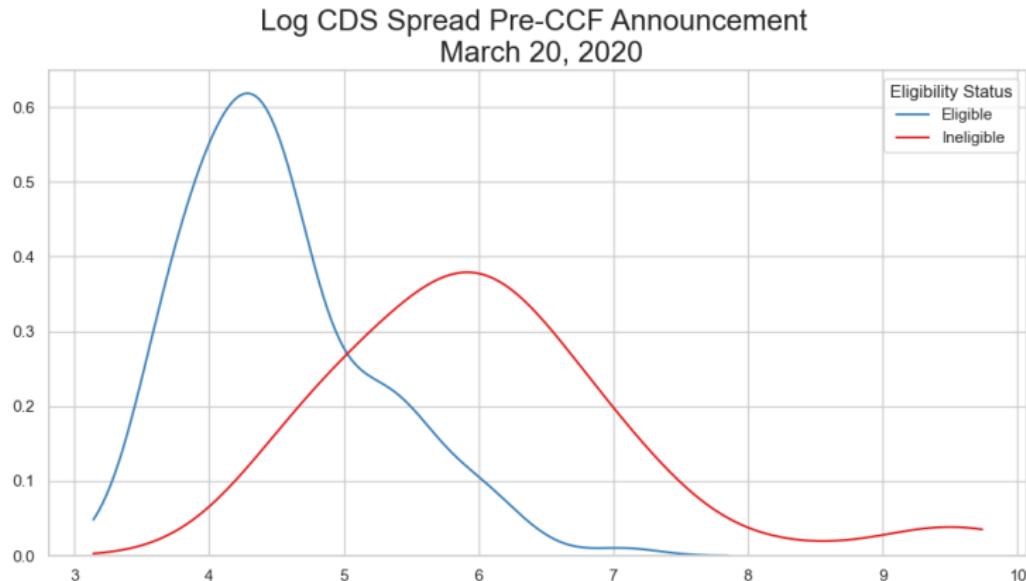


► Identification Assumptions

► Eligible

► Ineligible

# CDS SPREADS CONSISTENT WITH HIGHER DEFAULT RISK OF INELIGIBLE FIRMS



## HETEROGENEOUS TREATMENT EFFECTS

- Let  $\mathcal{F}$  denote the realized information for firms by the end of 2019.
- Let  $h = t - 2020$ , where  $t$  is the year. Define  $\Delta y_i^h = y_i^h - y_i^{-1}$ , which is the difference in the outcome variable for some year 2020 or later and its value in 2019.
- I restrict attention to all covariates realized by the end of 2019, with less than 1% of observations missing:  $x_i \subset \mathcal{F}$ .
- Binary treatment,  $z_i$ , is defined to equal 1 if a firm's cash bonds were eligible for direct purchase by the Fed CCFs at the announcement date.
- All together this gives the following potential outcomes model:

$$\Delta y_i^h = \alpha(x_i) + \beta(x_i)z_i + e_i \quad (1)$$

## HETEROGENEOUS TREATMENT EFFECTS

- Let  $Y^h(z)$  be the potential outcome at time  $h$  where  $Z$  denotes the treatment status. Then,

$$\begin{aligned}\mathbb{E}[\Delta Y_t^h | X = x, Z = z] &= \mathbb{E}[\Delta Y_t^h(z) | X = x, Z = z] \\ &= \mathbb{E}[\Delta Y_t^h(z) | X = x] \\ &= \alpha(x) + \beta(x)z\end{aligned}$$

where the first equality follows from the consistency assumption (the potential outcome is consistent with the treatment assignment) and the second equality follows from the unconfoundedness and overlap assumptions.

▸ Features ▸ Deep Net Architecture

▸ Size and Performance ▸ Liquidity and Solvency ▸ CDS Spreads

## HETEROGENEOUS TREATMENT EFFECTS

- Taking the difference in the differences in the outcome variables yields:

$$\mathbb{E}[\Delta Y^h(1) - \Delta Y^h(0) | X = x] = \beta(x)$$

- Hence, the CATE is given by  $\beta(x)$  and ATE, incorporating in heterogeneity, is given by:

$$\mu = \mathbb{E}[\beta(x)]$$

- Relax unconfoundedness to conditional parallel trends and no anticipation to obtain the average treatment effect on the treated.
- Another quantity of interest:  $\mathbb{E}[\alpha(x)]$ .
  - Average potential outcome absent treatment.
  - Referred to as the base effect.

## INFLUENCE FUNCTION ESTIMATOR

- Let the parameter vector be given by  $\theta = (\alpha, \beta)$ , then the expression for the influence function estimator is:

$$\psi(y_i^h, z_i, x_i, \theta(x_i)) = H(x_i, \theta(x_i)) - (\nabla_{\theta} H)(\mathbb{E}[l_{\theta\theta}|X=x]^{-1}l_{\theta})$$

where  $l$  the loss function,  $l_{\theta} = \frac{\partial}{\partial \theta} l$  is the score function, and  $l_{\theta\theta} = \frac{\partial^2}{\partial \theta \partial \theta'} l$  is the Hessian.

- Given a mean squared error loss function, we can express  $l$  as:

$$l(\Delta y^h, z, \theta(x)) = l(\Delta y^h, z, \alpha(x), \beta(x)) = \frac{1}{2}(\Delta y^h - \alpha(x) - \beta(x)z)^2$$

► Base Effect ► ATE ► Counterfactual Effect

## INFLUENCE FUNCTION ESTIMATOR

- Consequently, the expression for the score is:

$$l_\theta = - \begin{pmatrix} 1 \\ z \end{pmatrix} (\Delta y^h - \alpha(x) - \beta(x)z)$$

- And likewise, for the Hessian:

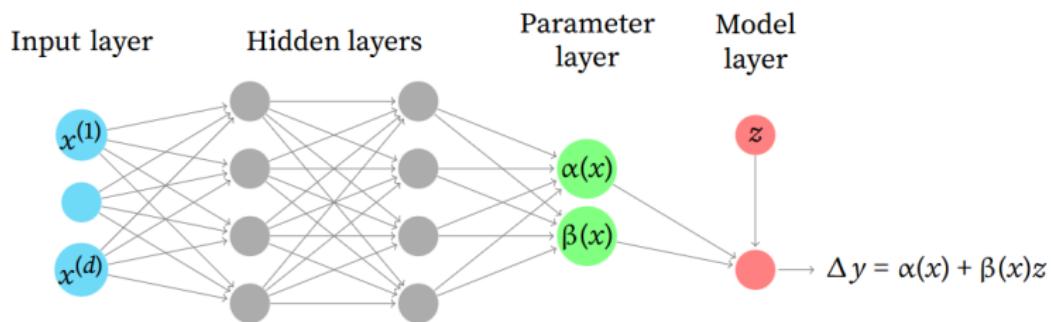
$$l_{\theta\theta} = \begin{pmatrix} 1 & z \\ z & z^2 \end{pmatrix}$$

- Let  $\Lambda(x) = \mathbb{E}[l_{\theta\theta}|X = x]$ . Hence,

$$\Lambda(x) = \begin{pmatrix} 1 & p(x) \\ p(x) & p(x) \end{pmatrix}$$

where,  $p(x) \equiv \Pr(z|X = x)$  is the propensity score.

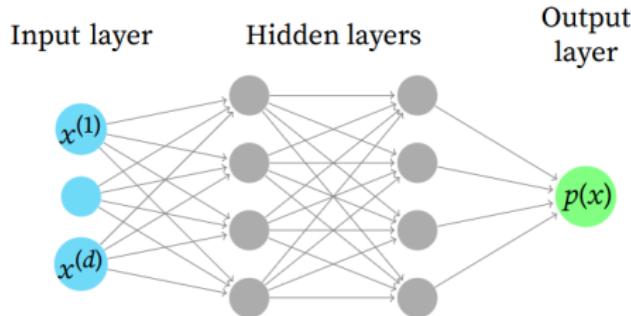
# DEEP NET ARCHITECTURE FOR PARAMETERS IN POTENTIAL OUTCOMES



- Multi-layer perceptron (MLP) with rectified linear (ReLU) activation functions within hidden layers.
- Linear output layer with mean-squared loss function.

‣ Deep Net Architecture

# DEEP NET ARCHITECTURE FOR PROPENSITY SCORES



- MLP with hyperbolic tangent (tanh) activation functions within hidden layers.
- Sigmoid output layer with binary cross-entropy loss function.

‣ Deep Net Architecture

## COMPUTING THE BASE EFFECT WITH HETEROGENEITY

- To estimate the base effect, set  $H(x, \theta(x)) = \alpha(x)$ .
- This gives the following form for the IF estimator:

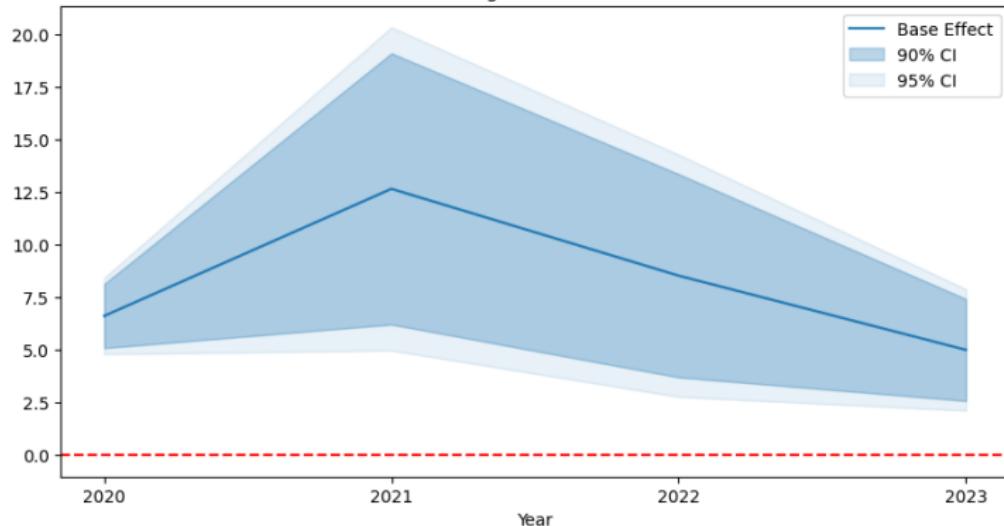
$$\alpha(x) + \frac{(1-z)(\Delta y^h - \alpha(x))}{1 - p(x)}$$

the parameters  $\alpha(x), p(x)$  are estimated using deep nets.

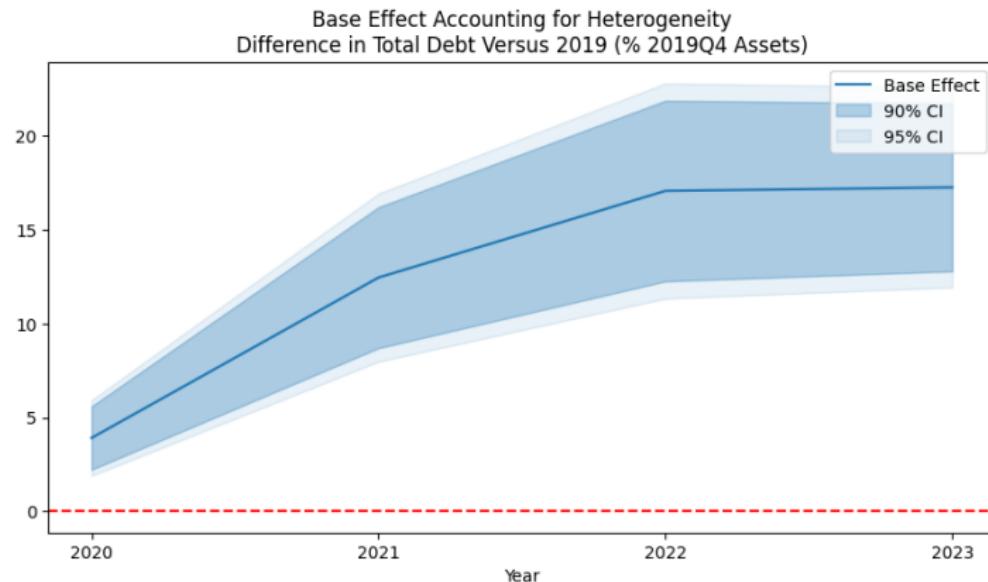
► General Expression for IF Estimator

# LARGE BASE EFFECT WITH INCREASE IN CASH HOLDINGS

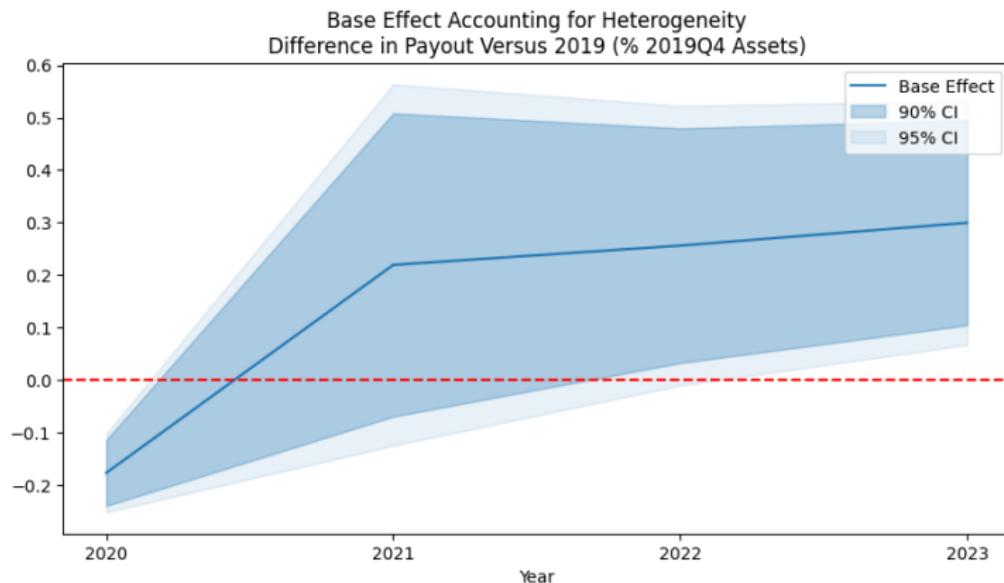
Base Effect Accounting for Heterogeneity  
Difference in Cash Holdings Versus 2019 (% 2019Q4 Assets)



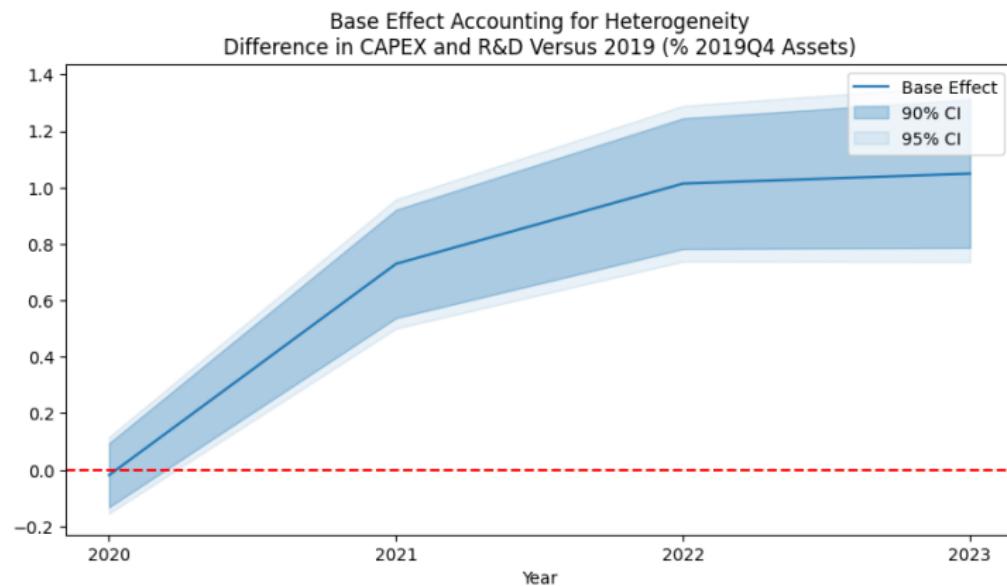
# LARGE BASE EFFECT WITH INCREASE IN TOTAL DEBT



# PAYOUT BASE EFFECT INITIALLY NEGATIVE THEN INCREASES



# INVESTMENT BASE EFFECT NEGATIVE BEFORE REVERTING TO NULL THEN INCREASING



## COMPUTING THE ATE WITH HETEROGENEITY

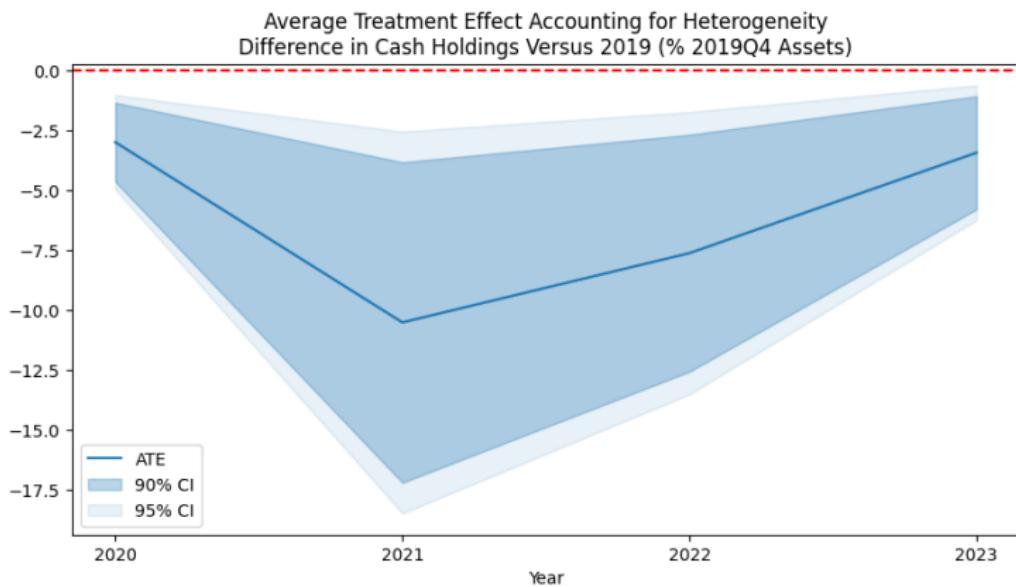
- To estimate the ATE, set  $H(x, \theta(x)) = \beta(x)$ .
- This gives the following form for the IF estimator:

$$\beta(x) + \frac{z(y^h - \alpha(x) - \beta(x)z)}{p(x)} - \frac{(1-z)(y^h - \alpha(x))}{1-p(x)}$$

the parameters  $\alpha(x), \beta(x), p(x)$  are estimated using deep nets.

► General Expression for IF Estimator

# CASH ATE WITH HETEROGENEITY SHOWS LARGE NEGATIVE EFFECT



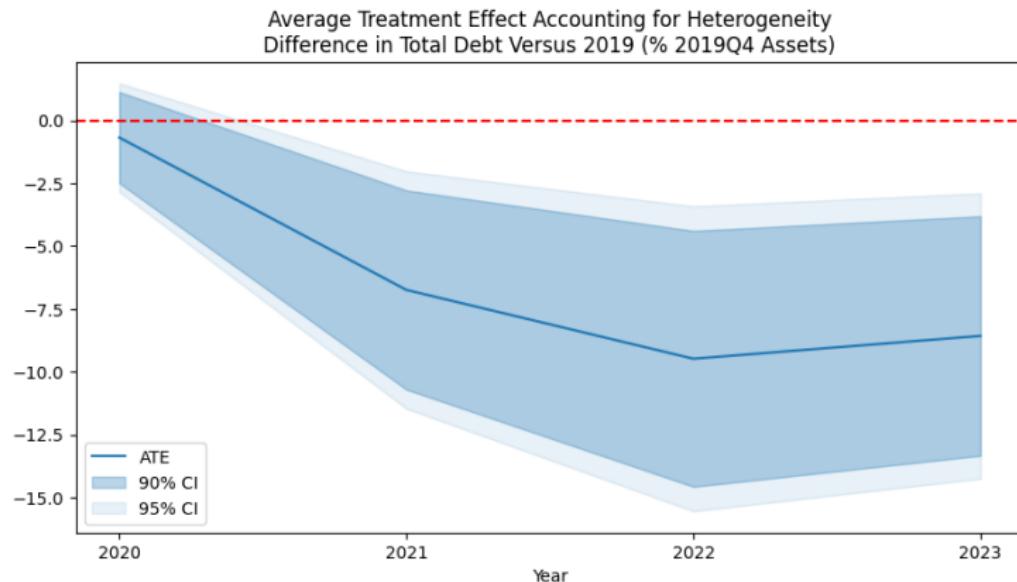
# CASH TREATMENT EFFECT COMPARISON

| Treatment Effect Estimates |                        |                                |                              |                       |
|----------------------------|------------------------|--------------------------------|------------------------------|-----------------------|
| Year                       | Cash (% 2019Q4 Assets) |                                |                              |                       |
|                            | Static (Homogeneous)   | Dynamic (Heterogeneous)<br>(1) | Dynamic (Homogeneous)<br>(2) | Difference<br>(1)-(2) |
| 2020                       |                        | -2.98<br>(1.00)                | -3.82<br>(0.79)              | 0.84                  |
| 2021                       |                        | -10.50<br>(4.06)               | -9.52<br>(2.42)              | -0.98                 |
| 2022                       |                        | -7.61<br>(3.00)                | -6.92<br>(2.27)              | -0.68                 |
| 2023                       |                        | -3.42<br>(1.43)                | -4.01<br>(1.09)              | 0.59                  |
| Eligible ×<br>Post 2020    | -7.46<br>(2.05)        |                                |                              |                       |

*Standard-errors in parentheses*

► DiD   ► ES

# DEBT ATE WITH HETEROGENEITY NEGATIVE AFTER 2020



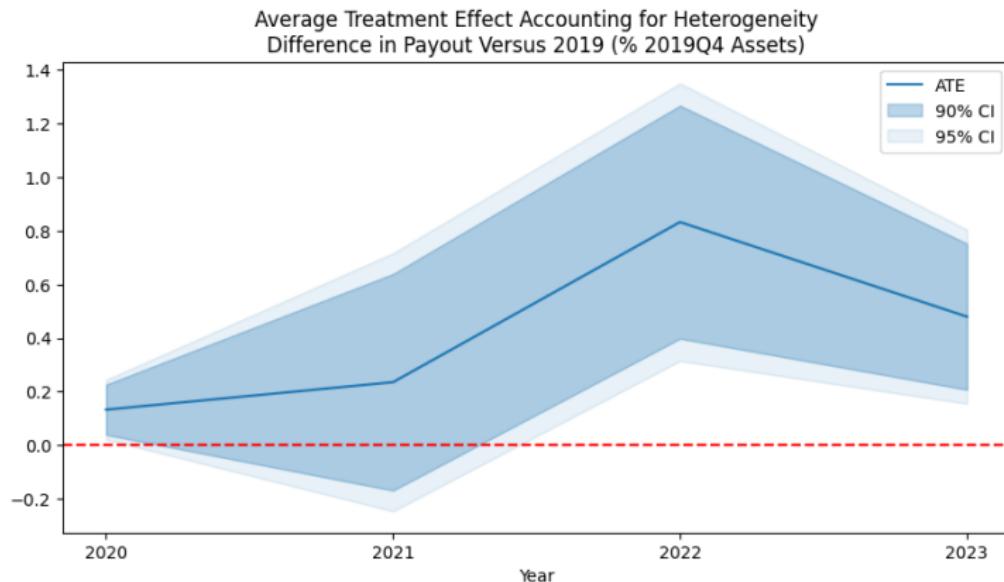
# DEBT TREATMENT EFFECT COMPARISON

| Treatment Effect Estimates |                              |                                |                              |                       |
|----------------------------|------------------------------|--------------------------------|------------------------------|-----------------------|
| Year                       | Total Debt (% 2019Q4 Assets) |                                |                              |                       |
|                            | Static (Homogeneous)         | Dynamic (Heterogeneous)<br>(1) | Dynamic (Homogeneous)<br>(2) | Difference<br>(1)-(2) |
| 2020                       |                              | -0.69<br>(1.10)                | -1.66<br>(0.65)              | 0.98                  |
| 2021                       |                              | -6.75<br>(2.41)                | -5.95<br>(2.30)              | -0.79                 |
| 2022                       |                              | -9.48<br>(3.09)                | -9.08<br>(2.59)              | -0.40                 |
| 2023                       |                              | -8.58<br>(2.90)                | -8.47<br>(1.95)              | -0.10                 |
| Eligible ×<br>Post 2020    | -6.21<br>(2.73)              |                                |                              |                       |

Standard-errors in parentheses

► DiD   ► ES

# PAYOUT ATE GENERALLY POSITIVE



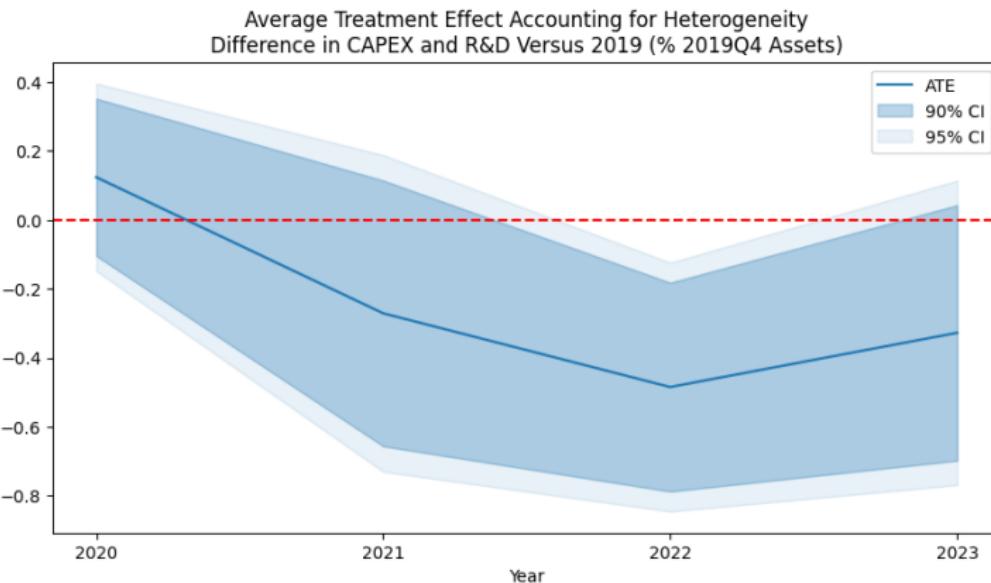
# PAYOUT TREATMENT EFFECT COMPARISON

| Treatment Effect Estimates |                          |                                |                              |                       |
|----------------------------|--------------------------|--------------------------------|------------------------------|-----------------------|
| Year                       | Payout (% 2019Q4 Assets) |                                |                              |                       |
|                            | Static (Homogeneous)     | Dynamic (Heterogeneous)<br>(1) | Dynamic (Homogeneous)<br>(2) | Difference<br>(1)-(2) |
| 2020                       |                          | 0.13<br>(0.06)                 | 0.54<br>(0.34)               | -0.41                 |
| 2021                       |                          | 0.23<br>(0.25)                 | 0.65<br>(0.36)               | -0.42                 |
| 2022                       |                          | 0.83<br>(0.26)                 | 0.99<br>(0.37)               | -0.16                 |
| 2023                       |                          | 0.48<br>(0.17)                 | 0.86<br>(0.39)               | -0.38                 |
| Eligible ×<br>Post 2020    | 1.16<br>(0.23)           |                                |                              |                       |

*Standard-errors in parentheses*

► DiD   ► ES

# UNLIKE PAYOUTS, INVESTMENT SHOWS NO RESPONSE



# INVESTMENT TREATMENT EFFECT COMPARISON

| Treatment Effect Estimates |                                 |                                |                              |                       |
|----------------------------|---------------------------------|--------------------------------|------------------------------|-----------------------|
| Year                       | CAPEX and R&D (% 2019Q4 Assets) |                                |                              |                       |
|                            | Static (Homogeneous)            | Dynamic (Heterogeneous)<br>(1) | Dynamic (Homogeneous)<br>(2) | Difference<br>(1)-(2) |
| 2020                       |                                 | 0.12<br>(0.14)                 | -0.49<br>(0.58)              | 0.62                  |
| 2021                       |                                 | -0.27<br>(0.23)                | -1.88<br>(0.80)              | 1.61                  |
| 2022                       |                                 | -0.49<br>(0.18)                | -0.99<br>(0.41)              | 0.50                  |
| 2023                       |                                 | -0.33<br>(0.23)                | -0.62<br>(0.29)              | 0.29                  |
| Eligible ×<br>Post 2020    | -0.90<br>(0.66)                 |                                |                              |                       |

*Standard-errors in parentheses*

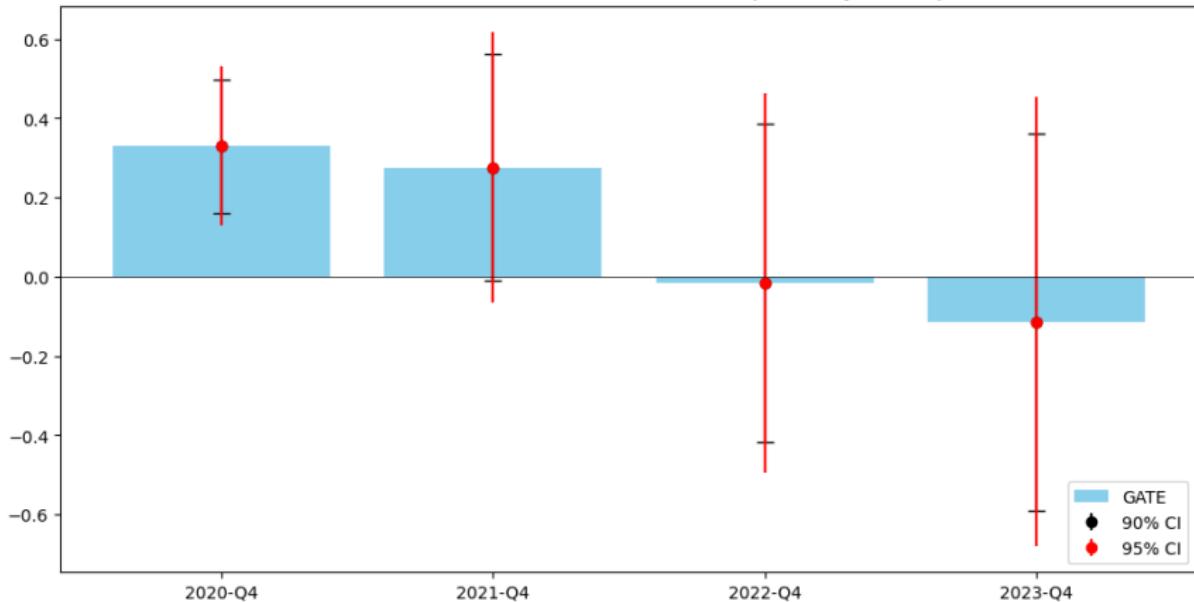
► DiD   ► ES

## COUNTERFACTUAL TREATMENT EFFECTS

- The counterfactual treatment effect is given by the group average treatment effect (GATE) for ineligible (B/BB rated) firms:  $\mathbb{E}[g\beta(x)]$ .
- Set  $H(x, \theta(x)) = g\beta(x)$  in the IF estimator, where  $g$  indicates if a firm is rated B or BB. » General Expression for IF Estimator
- The assumption of unconfoundedness is needed for causal interpretation. If this fails, the estimator identifies a predictive effect, still useful for policy analysis.
- A simple framework, as in Brunnermeier and Krishnamurthy (2020), suggests targeting weaker credits should result in stronger real effects.
- Momin and Li (2025) find that extending direct cash bond support to ineligible issuers would have led to around 500 bps of spread tightening.

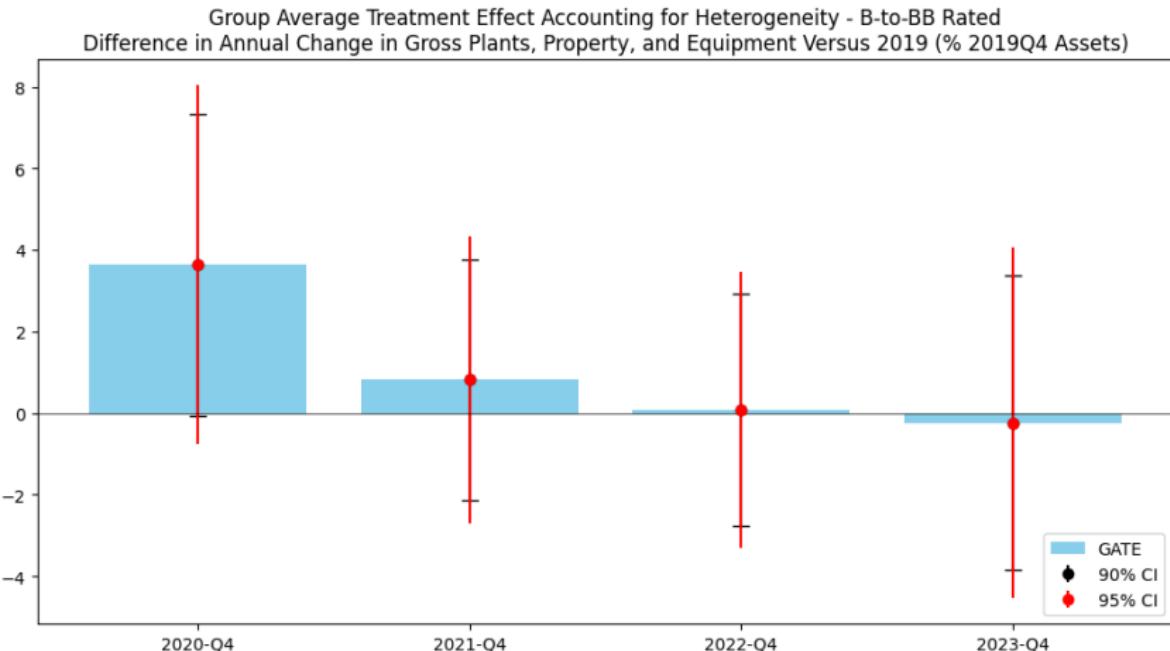
# POSITIVE COUNTERFACTUAL TREATMENT EFFECT FOR INVESTMENT NOT ROBUST

Group Average Treatment Effect Accounting for Heterogeneity - B-to-BB Rated Difference in CAPEX and R&D Versus 2019 (% 2019Q4 Assets)



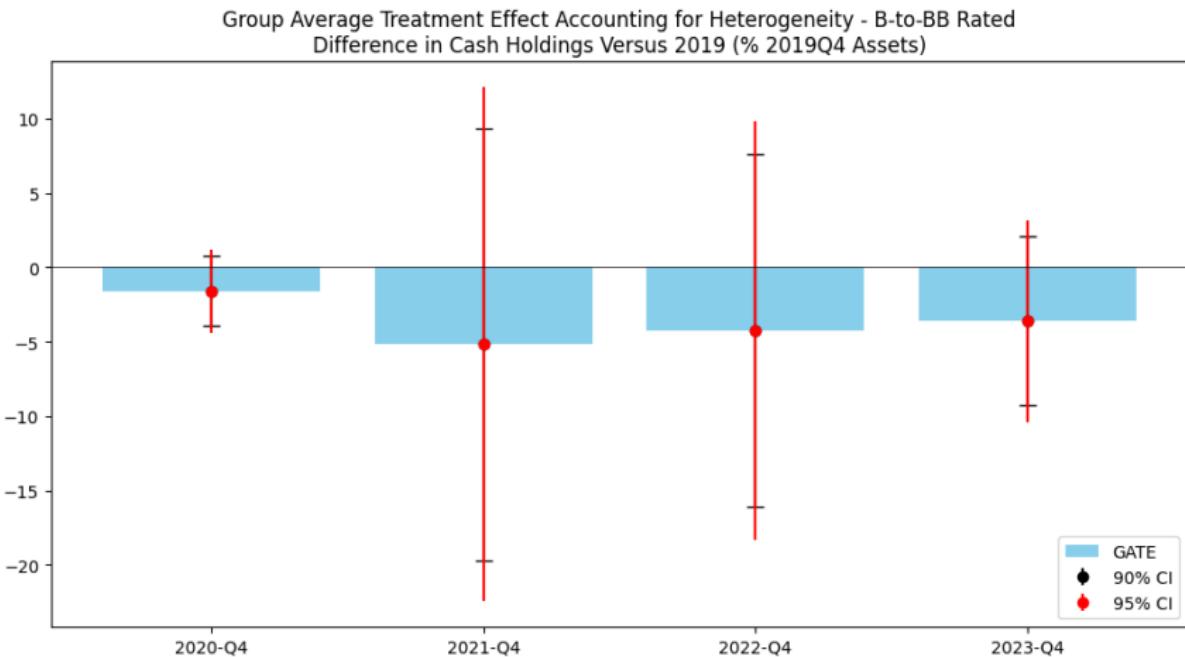
- Positive estimate for 2020 not robust to alternative investment proxy (PPE).

# NO IMPROVEMENT FOR INVESTMENT WITH ALTERNATIVE PROXY



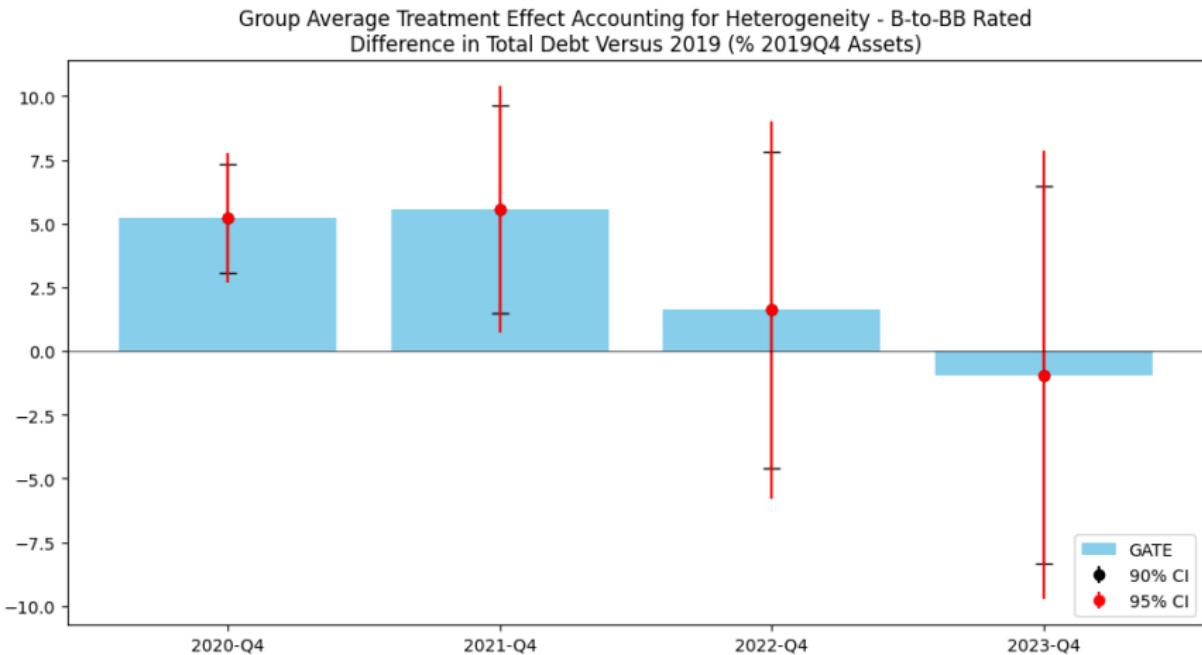
- Investment proxy: annual change in gross property, plant, and equipment.

# NULL COUNTERFACTUAL TREATMENT EFFECTS FOR CASH



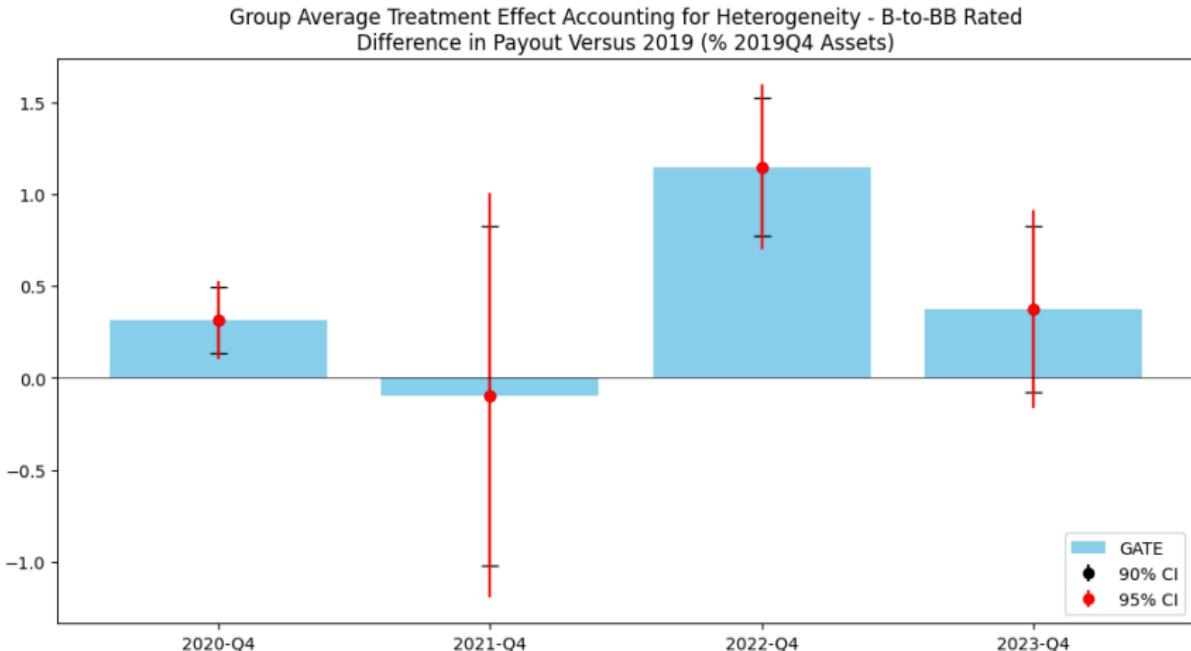
- Null effects estimated across different model specifications and horizons.

# POSITIVE COUNTERFACTUAL TREATMENT EFFECT FOR DEBT



- Positive and statistically significant effects for 2020 for models with at least 5 years of feature history.

# POSITIVE COUNTERFACTUAL TREATMENT EFFECT FOR PAYOUTS



- Positive and statistically significant effects for 2020 and 2022.

## NOVEL TWO-STEP SEMI-PARAMETRIC DID ESTIMATOR

- Estimates dynamic (heterogeneous) treatment effects, comparable to an event study with two-way fixed effects.
- Structural equation:
  - **Potential outcomes** = Non-parametric intercept + (Treatment indicator  $\times$  Non-parametric slope).
  - Slope term captures **individual-level heterogeneity** (Conditional Average Treatment Effects).
- Intercept, slope, and propensity scores estimated via deep neural networks using high-dimensional characteristics.
- Identification relies on **unconfoundedness & overlap** conditions; can relax to **parallel trends** assumption.

## APPLICATION: FEDERAL RESERVE'S CORPORATE CREDIT FACILITIES

- **Findings:**
  - All firms increased **leverage & cash holdings**, but **CCF-eligible firms increased less** than ineligible ones.
  - **No significant investment response** from eligible firms ⇒ **limited real effects** of CCFs.
  - Eligible firms **increased shareholder payouts** instead.
  - **Counterfactual treatment effects** for ineligible (B/BB) firms:
    - Mixed to inconclusive** evidence for improved investment.
    - Stronger evidence** for increased leverage (2020) and payouts (2020, 2022).

## DESCRIPTIVE STATISTICS - ELIGIBLE

|                                          | Median    | Mean      | Standard Deviation | Observations |
|------------------------------------------|-----------|-----------|--------------------|--------------|
| Common Equity at Market Value (Millions) | 22,421.93 | 58,526.71 | 122,246.57         | 321          |
| Total Debt (Millions)                    | 5,718.30  | 13,352.45 | 22,580.30          | 358          |
| Total Assets (Millions)                  | 17,642.35 | 39,488.83 | 73,815.12          | 358          |
| Employees (Thousands)                    | 16.30     | 56.42     | 146.44             | 345          |
| Book Leverage (Percent)                  | 49.03     | 49.86     | 17.21              | 345          |
| Market Leverage (Percent)                | 21.84     | 24.00     | 13.64              | 321          |
| Sales (Millions)                         | 8,980.15  | 25,430.24 | 51,988.78          | 358          |
| EBITDA (Millions)                        | 2,211.30  | 5,106.62  | 10,418.35          | 340          |
| EBITDA Interest Coverage                 | 9.44      | 13.77     | 17.03              | 338          |
| Debt-to-EBITDA                           | 2.87      | 3.17      | 1.82               | 340          |

► Size and Performance   ► Liquidity and Solvency   ► CDS Spreads

## DESCRIPTIVE STATISTICS - INELIGIBLE

|                                          | Median   | Mean     | Standard Deviation | Observations |
|------------------------------------------|----------|----------|--------------------|--------------|
| Common Equity at Market Value (Millions) | 2,075.07 | 5,054.11 | 10,387.18          | 460          |
| Total Debt (Millions)                    | 1,043.55 | 2,532.42 | 4,979.49           | 464          |
| Total Assets (Millions)                  | 2,502.09 | 5,584.92 | 10,617.85          | 465          |
| Employees (Thousands)                    | 3.63     | 10.82    | 22.73              | 458          |
| Book Leverage (Percent)                  | 52.47    | 53.71    | 20.14              | 412          |
| Market Leverage (Percent)                | 33.16    | 37.43    | 23.93              | 459          |
| Sales (Millions)                         | 1,667.11 | 3,556.65 | 6,182.18           | 462          |
| EBITDA (Millions)                        | 228.18   | 488.68   | 1,182.23           | 461          |
| EBITDA Interest Coverage                 | 3.86     | 3.89     | 16.70              | 452          |
| Debt-to-EBITDA                           | 3.65     | 3.92     | 25.65              | 460          |

► Size and Performance   ► Liquidity and Solvency   ► CDS Spreads

## DIFFERENCE-IN-DIFFERENCES REGRESSIONS

- Static (homogeneous) treatment effects are estimated using a difference-in-differences (DiD) regression.
- The specification is:

$$y_{i,t} = \beta_0 + \beta_1 \text{Eligible}_i + \beta_2 \text{Post}_t + \beta_3 (\text{Eligible}_i \times \text{Post}_t) + \gamma_i + \epsilon_{i,t} \quad (2)$$

where  $y_{i,t}$  is the outcome variable of interest,  $\text{Eligible}_i$  is an indicator variable with value 1 if firm  $i$  was eligible for cash bond purchases under the CCFs,  $\text{Post}_t$  is an indicator variable equal to 1 if date  $t$  is 2020 or later, and  $\gamma$  are two-digit NAICS industry fixed effects. The static treatment effect is given by  $\beta_3$ . The DiD regressions are computed over 2017 to 2023. Standard errors are clustered by issuer and date.

# DEBT LEVELS AND CASH HOLDINGS BROADLY INCREASED, WITH NEGATIVE TREATMENT EFFECT FOR ELIGIBLE FIRMS

| Dependent Variables:            | Cash (% 2019Q4 Assets) |                      | Total Debt (% 2019Q4 Assets) |                      |
|---------------------------------|------------------------|----------------------|------------------------------|----------------------|
| Model:                          | (1)                    | (2)                  | (3)                          | (4)                  |
| <i>Variables</i>                |                        |                      |                              |                      |
| Constant                        | 10.01***<br>(0.9476)   |                      | 36.37***<br>(2.943)          |                      |
| Eligible (Fed CCFs)             | -4.477***<br>(0.9565)  | -3.120***<br>(1.009) | -10.54***<br>(1.969)         | -12.49***<br>(2.010) |
| Post 2020                       | 9.866***<br>(2.015)    | 9.903***<br>(2.005)  | 23.16***<br>(4.075)          | 23.17***<br>(4.082)  |
| Eligible (Fed CCFs) × Post 2020 | -7.295***<br>(2.042)   | -7.464***<br>(2.046) | -6.141**<br>(2.733)          | -6.212**<br>(2.729)  |
| <i>Fixed-effects</i>            |                        |                      |                              |                      |
| NAICS (2-Digit)                 |                        | Yes                  |                              | Yes                  |
| <i>Fit statistics</i>           |                        |                      |                              |                      |
| Observations                    | 9,912                  | 9,912                | 9,502                        | 9,502                |
| R <sup>2</sup>                  | 0.03349                | 0.07229              | 0.07234                      | 0.10256              |
| Within R <sup>2</sup>           |                        | 0.02740              |                              | 0.07712              |

*Clustered (Issuer & Date) standard-errors in parentheses*

*Signif. Codes: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1*

# ELIGIBLE FIRMS' PAYOUT SHOWS POSITIVE EFFECT; NO EFFECT SEEN FOR INVESTMENT

| Dependent Variables:            | Dividends and Buybacks (% 2019Q4 Assets) |                       | Capital Expenditures and R&D (% 2019Q4 Assets) |                       |
|---------------------------------|------------------------------------------|-----------------------|------------------------------------------------|-----------------------|
| Model:                          | (1)                                      | (2)                   | (3)                                            | (4)                   |
| <i>Variables</i>                |                                          |                       |                                                |                       |
| Constant                        | 1.062***<br>(0.2192)                     |                       | 2.456***<br>(0.2956)                           |                       |
| Eligible (Fed CCFs)             | 0.9875***<br>(0.2433)                    | 0.8328***<br>(0.2519) | -1.217***<br>(0.3103)                          | -1.150***<br>(0.3168) |
| Post 2020                       | -0.1769<br>(0.2470)                      | -0.1554<br>(0.2473)   | 1.240*<br>(0.6771)                             | 1.305*<br>(0.6843)    |
| Eligible (Fed CCFs) × Post 2020 | 1.180***<br>(0.2377)                     | 1.158***<br>(0.2345)  | -0.8407<br>(0.6597)                            | -0.9016<br>(0.6642)   |
| <i>Fixed-effects</i>            |                                          |                       |                                                |                       |
| NAICS (2-Digit)                 |                                          | Yes                   |                                                | Yes                   |
| <i>Fit statistics</i>           |                                          |                       |                                                |                       |
| Observations                    | 9,641                                    | 9,641                 | 9,798                                          | 9,798                 |
| R <sup>2</sup>                  | 0.00907                                  | 0.01695               | 0.00988                                        | 0.03614               |
| Within R <sup>2</sup>           |                                          | 0.00657               |                                                | 0.00882               |

*Clustered (Issuer & Date) standard-errors in parentheses*

Signif. Codes: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1

► Payout   ► Investment

## EVENT STUDY REGRESSIONS

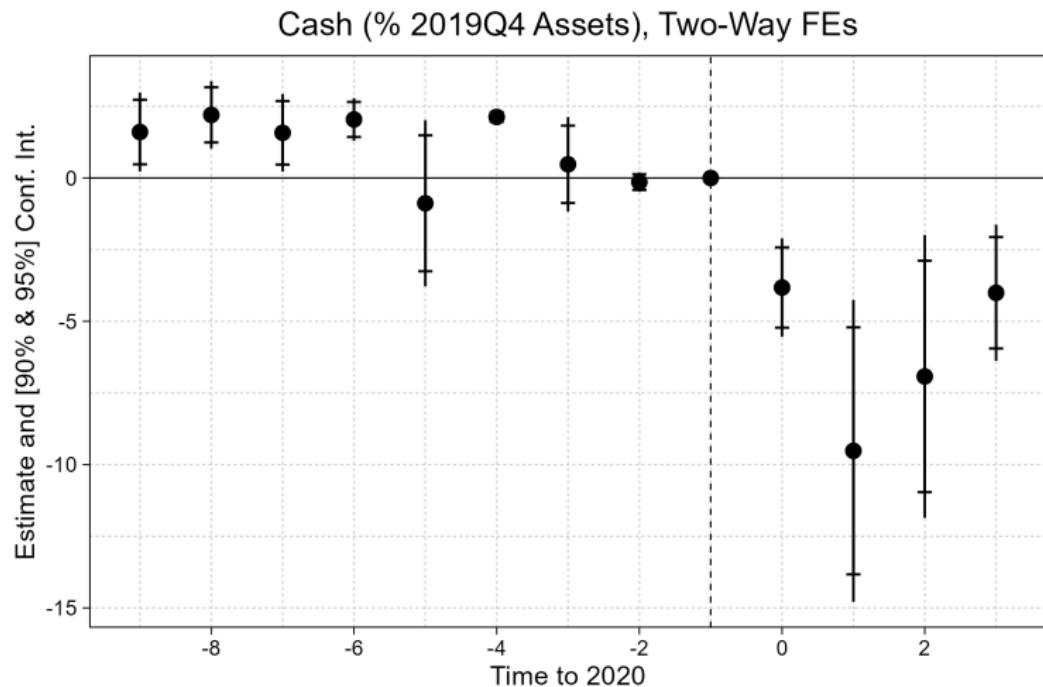
- To study the dynamic impact of the CCF intervention, I employ event study regressions with two-way fixed effects.
- These have the functional form:

$$y_{i,t} = \sum_{\tau=-3}^{-2} \beta_{\tau} D_t^{\tau} \text{Eligible}_i + \sum_{\tau=0}^3 \beta_{\tau} D_t^{\tau} \text{Eligible}_i + \gamma_i + \zeta_t + \epsilon_{i,t} \quad (3)$$

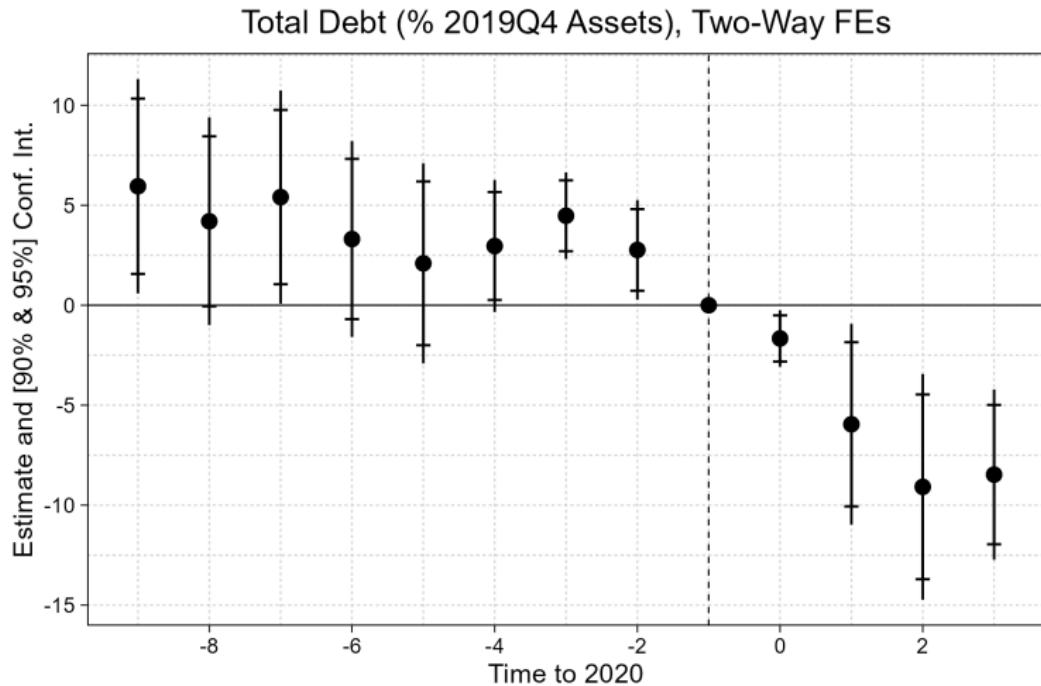
where  $y_{i,t}$  is the outcome variable of interest,  $D^{\tau} = \mathbf{1}\{t - 2020 = \tau\}$  is an indicator variable equal to 1 if the difference between the year  $t$  and 2020 is equal to  $\tau$ ,  $\text{Eligible}$  is an indicator variable with value 1 if the firm was eligible for direct cash bond purchases under the CCFs, 0 otherwise, and finally,  $\beta_{\tau}$  are the coefficients being estimated.

- Two-way unit and time fixed effects are given by  $\gamma_i$  for issuer and  $\zeta_t$  for year, respectively. The event study regressions are computed over the window 2017 to 2023. Standard errors are clustered by issuer and year.

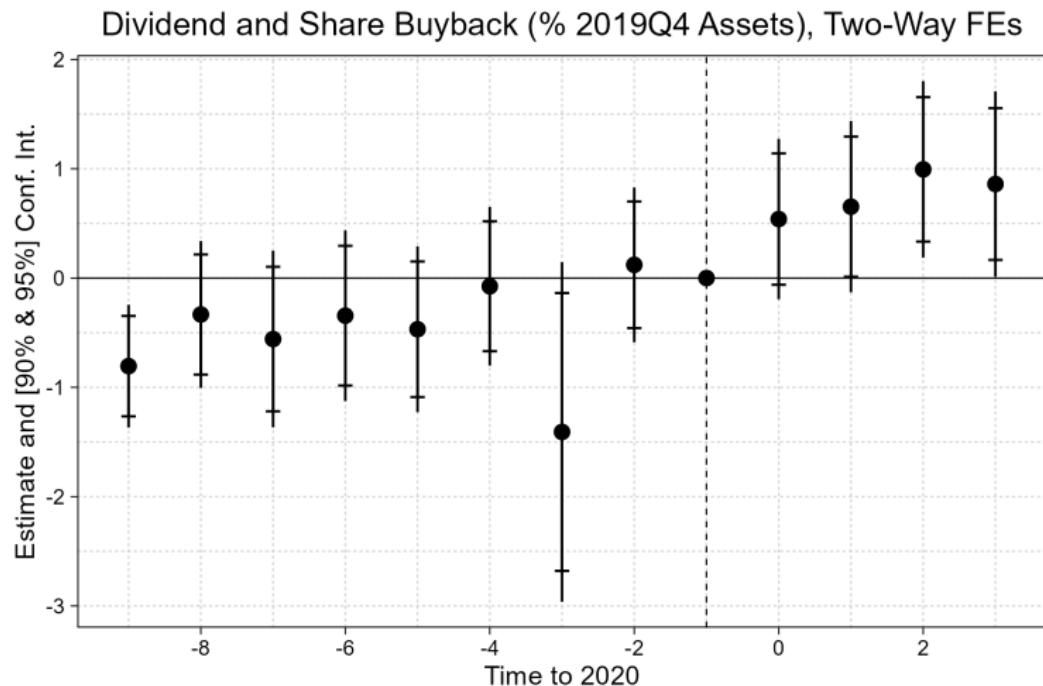
# ELIGIBLE FIRM CASH HOLDINGS SHOW RELATIVE DECLINE, BEFORE REVERTING



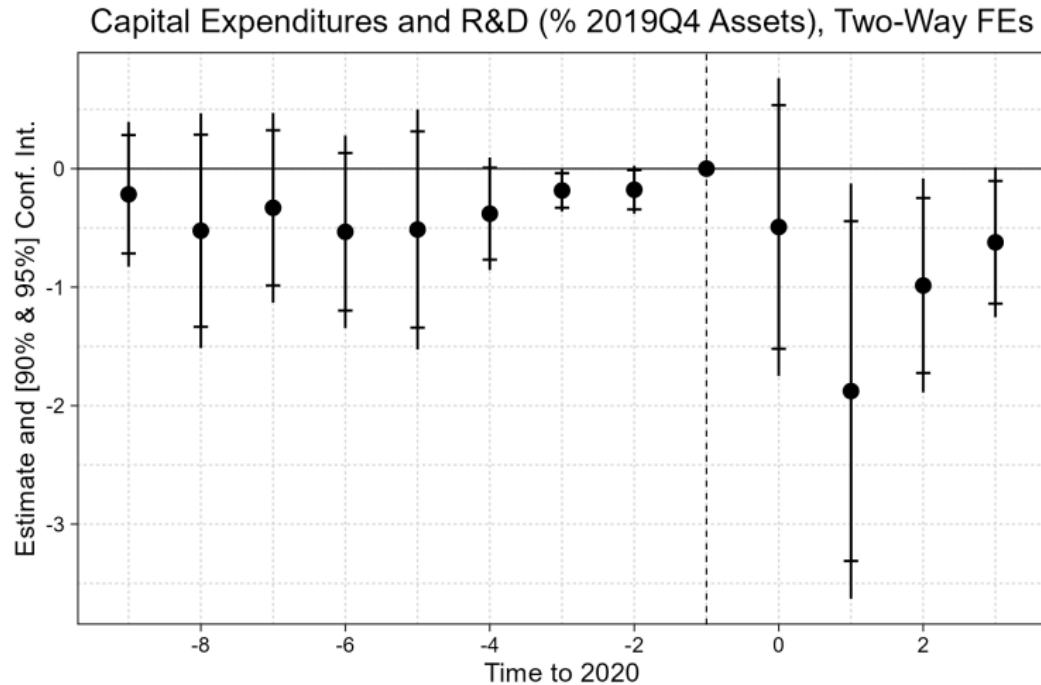
## RELATIVE LEVERAGE OF INELIGIBLE FIRMS RISE



## RELATIVE PAYOUTS BY ELIGIBLE FIRMS RISE



# ELIGIBLE FIRMS DISPLAY RELATIVE DECLINE IN INVESTMENT



# FEATURES WITH LESS THAN ONE PERCENT MISSING OBSERVATIONS

| Variable       | Description                                   |
|----------------|-----------------------------------------------|
| accrual        | Accruals/Average Assets                       |
| adv_sale       | Advertising Expenses/Sales                    |
| aftret_eq      | After-tax Return on Average Common Equity     |
| aftret_equity  | After-tax Return on Total Stockholders Equity |
| aftret_invcapx | After-tax Return on Invested Capital          |
| at_turn        | Asset Turnover                                |
| capital_ratio  | Capitalization Ratio                          |
| cash_debt      | Cash Flow/Total Debt                          |
| cash_lt        | Cash Balance/Total Liabilities                |
| cfm            | Cash Flow Margin                              |
| de_ratio       | Total Debt/Equity                             |
| debt_assets    | Total Debt (Ltg)/Total Assets                 |
| debt_at        | Total Debt/(dLcqdLttq)/Total Assets           |
| debt_capital   | Total Debt/Capital                            |
| debt_ebitda    | Total Debt/EBITDA                             |
| debt_invcap    | Long-term Debt/Invested Capital               |
| equity_invcap  | Common Equity/Invested Capital                |
| evm            | Enterprise Value Multiple                     |
| gpm            | Gross Profit Margin                           |
| gprof          | Gross Profit/Total Assets                     |
| lt_debt        | Long-term Debt/Total Liabilities              |
| lt_ppent       | Total Liabilities/Total Tangible Assets       |
| npm            | Net Profit Margin                             |
| opmad          | Operating Profit Margin After Depreciation    |
| opmbd          | Operating Profit Margin Before Depreciation   |
| pcf            | Price/Cash flow                               |
| pe_exi         | P/E (Diluted, Excl. EI)                       |
| pe_inc         | P/E (Diluted, Incl. EI)                       |
| pe_op_basic    | Price/Operating Earnings (Basic, Excl. EI)    |
| pe_op_dil      | Price/Operating Earnings (Diluted, Excl. EI)  |
| ps             | Price/Sales                                   |
| ptpm           | Pre-tax Profit Margin                         |
| rd_sale        | Research and Development/Sales                |
| roa            | Return on Assets                              |
| roce           | Return on Capital Employed                    |
| staff_sale     | Labor Expenses/Sales                          |
| totdebt_invcap | Total Debt/Invested Capital                   |

## › Identification Assumptions

# DEEP NET ARCHITECTURE

| Feature History (Years)   |                        |                                   |                                         |
|---------------------------|------------------------|-----------------------------------|-----------------------------------------|
|                           | 1                      | 5                                 | 10                                      |
| Number of Features        | 333                    | 1342                              | 3204                                    |
| Hidden Layer Architecture | [300, 150, 75, 35, 15] | [1500, 750, 375, 150, 75, 35, 15] | [2700, 1350, 675, 300, 150, 75, 35, 15] |
| Dropout Rate              | 20%                    |                                   |                                         |

- Identification Assumptions
- Potential Outcomes
- Propensity Scores