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1. Introduction

In announcing, and later expanding, the Corporate Credit Facilities (CCFs) in early
2020, the Federal Reserve references its dual-mandate to promote maximum em-
ployment and stable prices.1 Through purchases of corporate bonds in the primary
and secondary market, as well as exchange-traded funds (ETFs), the CCFs were in-
tended to support credit to firms and business activity, despite the shock created by
the COVID-19 pandemic.
While the CCFs could provide up to $750 billion in financing, actual purchases

totaled just $14.1 billion at 2020 year-end. However, markets priced in significant
contingent support by the Fed, especially if conditions were to deteriorate and tail
risks materialized (Haddad, Moreira, and Muir 2025). Consequently, the bulk of the
financial market effect of the CCFs were realized around its announcement, with
a significant decline in bond spreads.2 Record bond issuance followed,3 as did eq-
uity issuance, particularly for more financially constrained firms.4 Firms used the
proceeds to satisfy their demand for cash,5 paying back heavily utilized credit lines
drawn on prior to the intervention.6 Research on the implementation of corporate
bond purchase program in Europe by the European Central Bank (ECB), operational
since 2016, found decreases in financing costs for firms eligible for the program
which translated into higher bond issuance and payouts to shareholders but not in-
vestment.7Was this also the case for the Fed CCF intervention during the pandemic?
There is very good reason to believe the CCFs should have supported investment

by reducing financial constraints. Surveys of Chief Financial Offers (CFOs) by Barry
et al. (2022) during the pandemic suggest that improving financial flexibility would
improve hiring and capital spending. This echoes the CFO survey results of Campello,

1https://www.federalreserve.gov/newsevents/pressreleases/monetary20200323b.htm, https://www.
federalreserve.gov/newsevents/pressreleases/monetary20200409a.htm

2See Boyarchenko, Kovner, and Shachar (2022); D’Amico, Kurakula, and Lee (2020); Flanagan and
Purnanandam (2020); Gilchrist et al. (2021); Haddad, Moreira, and Muir (2021); Kargar et al. (2021);
Momin and Li (2022); O’Hara and Zhou (2021).

3See Becker and Benmelech (2021); Boyarchenko, Kovner, and Shachar (2022); Darmouni and Siani
(2024); Dutordoir et al. (2024); Halling, Yu, and Zechner (2020); Hotchkiss, Nini, and Smith (2022)

4See Dutordoir et al. (2024); Halling, Yu, and Zechner (2020); Hotchkiss, Nini, and Smith (2022).
5See Acharya and Steffen (2020); Darmouni and Siani (2024); Pettenuzzo, Sabbatucci, and Timmer-

mann (2023)
6See: Acharya and Steffen (2020); Darmouni and Siani (2024); Greenwald, Krainer, and Paul (2020).
7See De Santis and Zaghini (2021); Grosse-Rueschkamp, Steffen, and Streitz (2019); Todorov (2020).
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Graham, and Harvey (2010) during the Great Financial Crisis (GFC), where the vast
majority of CFOs stated that financial constraints restricted investments in attractive
projects. Firms do seem to have prioritized financial flexibility at the onset of the
pandemic by initially cutting payouts.8Were these actions taken to both preserve
cash and support operations? Becker and Benmelech (2021) and Darmouni and Siani
(2024) find firms do not increase investment, but does this hold on a relative basis for
firms targeted by the CCFs versus those that are not? How about after accounting for
the heterogeneous reactions of firms?9 And is this still true in the years following the
pandemic, as the shock fades, and investment opportunities improve?
To answer these questions, I introduce a novel two-step semi-parameteric difference-

in-differences (DiD) estimator to compute dynamic (heterogeneous) treatment ef-
fects from the onset of the pandemic in 2020 through 2023. To achieve identification,
I use an extremely high-dimensional set of controls, allowing for rich, potentially,
non-linear interactions. The number of controls far exceeds the number of obser-
vations used in estimation, thus requiring tools from the double/debiased machine
learning (DML) and causal machine learning literature to perform proper inference.
This is accomplished by using an influence function (IF) estimator, alternatively
called a Neyman orthogonal score function.
The first step requires estimating the non-parametric terms in the structural equa-

tion for the potential outcomes model which specifies the treatment effect. The struc-
tural equation for potential outcomes is the linear combination of a non-parametric
intercept term and the interaction of a treatment indicator (eligibity for the CCFs)
and a non-parametric slope term. The slope term captures individual level hetero-
geneity, that is, conditional average treatment effects (CATEs). Another ingredient
for the estimator is an estimation of propensity scores, the probability of a firm be-
ing classified as eligible for the CCFs, which is also modeled as a non-parametric
function of a high-dimensional set of characteristics. The non-parametric terms are
estimated using deep feed-forward neural networks. Deep nets are used because abil-
ity to approximate continuous functions of real variables arbitrarily well, showing
exceptional performance in this regard (Chronopoulos et al. 2023). Farrell, Liang,
and Misra (2021a) provides the theoretical justification for using deep nets to esti-
mate non-parametric terms in the first step of two-step semi-parametric estimation

8See Ali (2022); Cejnek, Randl, and Zechner (2021); Gormsen and Koijen (2020); Krieger, Mauck,
and Pruitt (2021); Pettenuzzo, Sabbatucci, and Timmermann (2023).

9See Darmouni and Siani (2024); Greenwald, Krainer, and Paul (2020); Haque and Varghese (2021);
Hassan et al. (2023); Pagano and Zechner (2022).
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and inference. The expression for the two-step semi-parametric DiD estimator is
derived from the general expressions for IF estimators given in Farrell, Liang, and
Misra (2021b).
Identification of average treatment effects (ATEs) requires that the assumptions of

unconfoundedness and overlap are satisfied. I defend the assumption of unconfound-
edness by appealing to the extremely large set of covariates used in the estimation of
the non-parametric terms, along with the usage of deep nets allows for the estima-
tion of rich interactions and potential non-linearities. The covariate set consists of
the quarterly histories of 37 to 60 pre-treatment variables going back up to 10 years,
along with indicator variables for industry classification. However, I note that at
the cost of identifying the average treatment effect on the treated (ATET), instead of
the ATE, given the DiD nature of the estimator, I can use the weaker assumptions of
conditional no anticipation and parallel trends, instead of unconfoundedness. This
requires that, conditional on the pre-treatment variables, firms did not anticipate
the CCFs in 2019 and that comparable firms would have exhibited similar dynam-
ics, absent intervention. A general lack of pre-trends in event study regressions sug-
gests that conditional parallel trends is a justifiable assumption, and estimates of
the ATE and ATET are not statistically different from zero. Overlap is justified by the
slow-moving nature of credit ratings, which determined firm eligibility for the CCFs,
and the significant overlap in the distributions of fundamental characteristics and
market-based measures of risk (CDS spreads) across eligible and ineligible firms.
I compare the dynamic (heterogeneous) treatment effects from the novel estima-

tor to static (homogeneous) treatment effects from a DiD panel regression and dy-
namic (homogeneous) treatment effects from an event study design with two-way
fixed effects. The magnitudes of the point estimates and standard errors are similar.
The results show that while all firms increased leverage and cash holdings as a pro-
portion of 2019 year-end assets, firms eligible for the CCFs increased leverage and
cash to a relatively lower extent than ineligible firms. Both the static (homogeneous)
treatment effects and the dynamic (heterogeneous) treatment effects indicate that el-
igible firms do not show show an increased investment response over the treatment
horizon, thus suggesting that the CCFs may not have met its objective for producing
real effects. These results are robust to alternative proxies for investment. I argue
in preference for the result from the two-step semi-parametric estimator, since the
high-dimensional set of controls can better control for potential selection bias and
account for heterogeneity. In contrast, all models general indicate that eligible firms
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did increase payouts to shareholders, at least on a relative basis, with the two-step
semi-parametric estimator showing that this was apparent even in 2020.
Since an intermediary step to computing ATEs using the two-step semi-parametric

estimator is to compute the distribution of CATEs, I can study the effects of counter-
factual policy targeting schemes, particularly to see if investment can be improve.
This is also identified if the unconfoundedness assumption and overlap condition
holds. Although, without the unconfoundedness assumption, the estimator is still
valid and recovers the predictive effects of alternative policy targeting schemes,
which is still important for policy diagnostics. The CFO survey evidence of Campello,
Graham, and Harvey (2010) and Barry et al. (2022) suggests that targeting weaker,
more financially constrained credits may produce stronger real effects. This is also
echoed in the simple theoretical setup of Brunnermeier and Krishnamurthy (2020).
Counterfactual policy targeting loosening the CCFs eligibility criteria to also target
BB-rated firms exhibits weak to inconclusive evidence of improving investment out-
comes in 2020, while showing no evidence of improved outcomes for later years.
This paper contributes to several literatures. First, it contributes to the extensive

literature on the financial and real dynamics of firms during the COVID-19 pandemic
that was earlier cited. Among these, the paper closest to this one is that of Darmouni
and Siani (2024). They also show that firms drastically increased bond issuance fol-
lowing the announcement of the Fed CCFs and that the proceeds from these were
used to pay down previously drawn credit lines and build cash buffers. They find that
firms maintained equity payouts but did not increase investment. While I echo most
of their findings, I utilize a different identification strategy that involves inferring
treatment effects from comparing the relative dynamics of eligible firms versus inel-
igible firms using high-dimensional controls in a non-linear setting, rather than an
instrumental variable (IV) approach as was used in their approach. Additionally, to
the best of my knowledge, I am the first to study the counterfactual effects of the Fed
CCFs from counterfactual policy targeting.
Second, this paper contributes to the DML and CML literature. The canonical ref-

erences to using DML for estimation and inference are Belloni, Chernozhukov, and
Hansen (2014) and Chernozhukov et al. (2018).10 The DML literature commonly uses
a partially linear model for specifying the structural potential outcomes model where
the intercept term is referred to as an infinite-dimensional nuisance parameter and
the slope term is the product of a constant, homogeneous treatment effect and a

10See also the textbook Chernozhukov et al. (2024).

4



treatment indicator. Farrell, Liang, and Misra (2021b) provides the general expres-
sion for the IF estimator for smooth structural models. From this I derive a two-step
semi-parametric DiD estimator with non-parametric, heterogeneous CATEs and
show that the dynamic (heterogeneous) treatment effects estimated from this es-
timator is similar to the static (homogeneous) treatment effect estimated from a
panel DiD regression and to the dynamic (homogeneous) treatment effects estimated
from event study regressions with two-way fixed effects. This estimator has a similar
functional form and is analogous to the doubly-robust DiD estimator of Sant’Anna
and Zhao (2020) in the non-ML context and the DML DiD estimator of Chang (2020).
While the derivation of the estimator that I utilize in this paper is straight-forward, to
the best of my knowledge, I am the first to present this, at least in the context of an
application in finance.
Third, this paper contributions to the finance and accounting literatures featur-

ing applications of DML and two-step semi-parameteric estimators, more generally.
The majority of these papers utilize DML for model selection and inference in high-
dimensional settings. Among empirical asset pricing papers, specifically, on factor
models for explaining the cross-section of stock returns, Feng, Giglio, and Xiu (2020)
is the first to use DML to assess new factors given control factors from the factor
zoo. Maasoumi et al. (2024) proposes a DML-based method to identify factors with
the most significant explanatory power for explaining the cross-section of stock re-
turns, rather than just evaluating new factors as in Feng, Giglio, and Xiu (2020). Borri
et al. (2024) uses DML to compare their proposed novel, nonlinear asset pricing fac-
tor for explaining the cross-section of equity returns against the factor zoo, finding
that their proposed factor significant while the majority of factor zoo is not. Other
empirical asset pricing applications include Hansen and Siggaard (2024), who uses
DML to revisit explanations of the post-earnings announcement drift (PEAD), and
Gomez-Gonzalez, Uribe, and Valencia (2024), who employs DML to study the effect of
economic complexity index on sovereign yield spreads, considering a large number
of explanatory variables.
There are also numerous accounting and corporate finance applications of DML.

Bilgin (2023) studies the significance of cash holdings, current ratio, and non-debt
tax shield in determining firms’ capital structure in the face of high-dimensional
controls. De Marco and Limodio (2022) uses DML to understand which characteris-
tics among a high dimensional set contributes the most to bank climate resilience.
Movaghari, Tsoukas, and Vagenas-Nanos (2024) studies the determinants of cash
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holdings. Wasserbacher and Spindler (2024) studies the heterogeneous effects causal
effect of ratings on the leverage ratio, also taking into consideration high dimen-
sional controls. Finally, Yang, Chuang, and Kuan (2020) studies the ‘Big N’ audit qual-
ity effect.
Papers specifically using the two-step semi-parameteric estimation/inference

methodology of Farrell, Liang, and Misra (2021a) and Farrell, Liang, and Misra (2021b),
along with deep nets to estimate non-parameteric terms, include Kim and Nikolaev
(2024a) and Kim and Nikolaev (2024b). Kim and Nikolaev (2024a) uses the approach
of Farrell, Liang, and Misra (2021b) to specify a semi-parameteric function that al-
lows for interactions between numerical and narrative data to forecast operating
profitability. Similarly, Kim and Nikolaev (2024b) studies the narrative context pro-
vided by disclosures around the release of numeric information to understand the
effect of contextual information on earnings persistence, combining textual and
numeric data via deep nets to uncover heterogeneous effects. In a spirit similar to
Farrell, Liang, and Misra (2021b), Simon, Weibels, and Zimmermann (2022) embeds
a structural model of portfolio allocation in a deep net via the loss function used to
train the deep net and learn the parameters for portfolio weights.
While my application also utilizes the methods from this literature for model selec-

tion and inference in high-dimensional settings, and to infer heterogeneous effects,
in the context of estimating non-parameteric terms using deep nets, I also compute
counterfactual treatment effects for policy evaluation. To the best of my knowledge,
this is the first such application of its kind in the finance and accounting literatures.
The rest of the paper is organized as follows. Section 2 provides the institutional

background of the Fed CCFs. Section 3 describes the data and presents the descrip-
tive statistics for eligible and ineligible firm variables. Section 4 presents the static
(homogeneous) treatment effects obtained from a panel DiD regression. Section 5
presents the dynamic (homogeneous) treatment effects obtained from event study re-
gressions with two-way fixed effects. Section 6 presents the dynamic (heterogeneous)
treatment effects obtained from the two-step semi-parameteric DiD estimators. Sec-
tion 7 presents the results from counterfactual policy targeting experiments. Section
8 concludes.
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2. Institutional Background

The Federal Reserve initially announced the Primary Market Corporate Credit Fa-
cility (PMCCF) and the Secondary Market Corporate Facility (SMCCF) on March 23,
2020.11 Both facilities were established with a liquidity backstop provided by the Trea-
sury. Initially, the CCFs, along with the Term Asset-Backed Securities Loan Facility
(TALF), had the potential to provide up to $300 billion in financing.12

Eligibility for the CCFs was determined at the issuer level with eligible issuers
needing to be American companies with headquarters and material operations do-
mestically. Additionally, eligible issuers needed to be rated investment-grade (IG). In
the case issuers had multiple ratings, the plurality of these ratings were required to
be IG. Depository institutions and depository holding companies were excluded from
eligibility. Moreover, the SMCCF also targeted IG ETFs.
On April 9, 2020, the Federal Reserve increased the size of the facilities, such that

the CCFs could provide up to $750 billion in financing.13 Additionally, the eligibility
criteria of the facilities were amended such that issuers meeting the rating criteria
as of March 22, 2020 were deemed eligible for the facilities. Effectively, this meant
that issuers (‘Fallen Angels’) downgraded out of eligibility between the initial and
subsequent announcement dates had their eligibility restored. The term sheet of the
SMCCF was also amended to expand eligible ETFs to include high-yield (HY) ETFs.
The Federal Reserve began the purchases of ETFs on May 12, 202014 and of sec-

ondary market cash bonds according to a “broad, diversified market index” on June
15, 2020.15 Participation in the SMCCF initially required corporate issuers certify
compliance with the eligibility criteria.16 The SMCCF continued purchases until De-
cember 31, 2020, finishing with a total portfolio of $14.1 billion, while the PMCFF was
not utilized.17 The SMCCF began winding down its ETF holdings on June 7, 2021 and
corporate bond holdings on July 12, 2021, completing the divestitures by August 31,

11https://www.federalreserve.gov/newsevents/pressreleases/monetary20200323b.htm
12https://home.treasury.gov/news/press-releases/sm951
13https://www.federalreserve.gov/newsevents/pressreleases/monetary20200409a.htm
14https://www.newyorkfed.org/newsevents/news/markets/2020/20200511
15https://www.federalreserve.gov/newsevents/pressreleases/monetary20200615a.htm
16https://www.newyorkfed.org/markets/primary-and-secondary-market-faq/archive/

corporate-credit-facility-faq-201204
17https://newbagehot.yale.edu/docs/united-states-primary-market-corporate-credit-facility-and-secondary-market-corporate-credit

7

https://www.federalreserve.gov/newsevents/pressreleases/monetary20200323b.htm
https://home.treasury.gov/news/press-releases/sm951
https://www.federalreserve.gov/newsevents/pressreleases/monetary20200409a.htm
https://www.newyorkfed.org/newsevents/news/markets/2020/20200511
https://www.federalreserve.gov/newsevents/pressreleases/monetary20200615a.htm
https://www.newyorkfed.org/markets/primary-and-secondary-market-faq/archive/corporate-credit-facility-faq-201204
https://www.newyorkfed.org/markets/primary-and-secondary-market-faq/archive/corporate-credit-facility-faq-201204
https://newbagehot.yale.edu/docs/united-states-primary-market-corporate-credit-facility-and-secondary-market-corporate-credit


2021.18 Equity capital was returned to the Treasury and the facilities were terminated
by the end of 2021. For information on the full range of public sector interventions
undertaken in the United States during the pandemic, see Clarida, Duygan-Bump,
and Scotti (2021).

3. Data

3.1. Sample Construction

Firm fundamental characteristics are obtained from Compustat North America via
Wharton WRDS and the Financial Ratios Suite by WRDS. Firms incorporated outside
of the United States are dropped, as are firms with two-digit NAICS code 52, which
corresponds to the Finance and Insurance industry. This drops firms outside the
eligibility criteria for CCF cash bond purchases. Additionally, CDS spread data for
five-year senior unsecured debt is obtained from IHS Markit through WRDS. Eligibil-
ity criteria is determined using issue ratings corresponding to senior unsecured debt
(which correspond to issuer ratings), obtained fromMergent Fixed Income Securities
Database (FISD) via Wharton WRDs.

3.2. Descriptive Statistics

Tables 1 and 2 report key fundamental characteristics and financial indicators for
public eligible and ineligible traded firms, respectively, for the 2019 fiscal year. There
are more eligible firms than ineligible firms, but the counts for each are sizeable. In
general, eligible issuers are larger, more solvent, and more liquid. The larger size of
eligible firms are reflected in far larger equity valuations, higher debt levels, greater
asset holdings, more sales, and higher EBITDA. While eligible firms have more em-
ployees, the gap here is much smaller compared to ineligible firms. Ineligible firms
are less solvent as reflected in higher book and market leverage and larger five-year
senior unsecured CDS spreads. The lower liquidity of ineligible firms are reflected in
lower EBITDA interest coverage, debt-to-EBITDA, and profit margin. These trends are
reinforced in the distributions of size and performance indicators in Figure 1, and of
solvency and liquidity indicators in Figure 2.
Figure 3 graphs the distribution of log CDS spreads on March 20, 2020, the last

business day before the CCF announcement on March 23, 2020, for both eligible

18https://www.newyorkfed.org/markets/secondary-market-corporate-credit-facility

8

https://www.newyorkfed.org/markets/secondary-market-corporate-credit-facility


Table 1. Descriptive Statistics - Eligible

Median Mean Standard Deviation Observations
Common Equity at Market Value (Millions) 22,421.93 58,526.71 122,246.57 321
Total Debt (Millions) 5,718.30 13,352.45 22,580.30 358
Total Assets (Millions) 17,642.35 39,488.83 73,815.12 358
Employees (Thousands) 16.30 56.42 146.44 345
Book Leverage (Percent) 49.03 49.86 17.21 345
Market Leverage (Percent) 21.84 24.00 13.64 321
Sales (Millions) 8,980.15 25,430.24 51,988.78 358
EBITDA (Millions) 2,211.30 5,106.62 10,418.35 340
EBITDA Interest Coverage 9.44 13.77 17.03 338
Debt-to-EBITDA 2.87 3.17 1.82 340

The table shows accounting and financial information for publicly traded firms who are identified to be
eligible for direct cash bond purchases under the Fed CCFs based on their ratings. The data corresponds
to fiscal year 2019. Compared to ineligible firms, eligible firms are far larger as measured by market
equity, total assets, employee headcount, and sales. Moreover, they have stronger liquidity and solvency
indicators.

Table 2. Descriptive Statistics - Ineligible

Median Mean Standard Deviation Observations
Common Equity at Market Value (Millions) 2,075.07 5,054.11 10,387.18 460
Total Debt (Millions) 1,043.55 2,532.42 4,979.49 464
Total Assets (Millions) 2,502.09 5,584.92 10,617.85 465
Employees (Thousands) 3.63 10.82 22.73 458
Book Leverage (Percent) 52.47 53.71 20.14 412
Market Leverage (Percent) 33.16 37.43 23.93 459
Sales (Millions) 1,667.11 3,556.65 6,182.18 462
EBITDA (Millions) 228.18 488.68 1,182.23 461
EBITDA Interest Coverage 3.86 3.89 16.70 452
Debt-to-EBITDA 3.65 3.92 25.65 460

The table shows accounting and financial information for publicly traded firms who are identified to be
ineligible for direct cash bond purchases under the Fed CCFs based on their ratings. The data corresponds
to fiscal year 2019. Compared to eligible firms, ineligible firms are far smaller as measured by market
equity, total assets, employee headcount, and sales. Moreover, they have weaker liquidity and solvency
indicators.
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Figure 1. Eligible Issuers are Larger, with More Substantial Cash Flows

The figure shows the distributions of the logged values of several size and performance indicators across
eligible and ineligible issuers of the Fed CCFs. Eligible issuers have more assets and higher employee
headcounts. Additionally, they generate higher revenue and register higher EBITDA.

and ineligible firms. Firms with CDS spreads are a subset of all firms with public
financials. The figure reinforces the information presented in the tables, but also
reveals that eligible firms are not uniformly perceived to have lower default risk
than ineligible firms. Notably, there is a significant overlap in the supports of the
two distributions, with the support of eligible firms’ CDS spread distribution almost
entirely lying within the corresponding support for ineligible firms.
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Figure 2. Eligible Issuers are also More Liquid with Lower Leverage

The figure shows the distributions of the logged values of several solvency and liquidity indicators across
eligible and ineligible issuers of the Fed CCFs. While both sets of issuers have comparable distributions of
book leverage, eligible issuers have far lower levels of market leverage (as measured with respect to firm
market value). Additionally, eligible issuers have greater cash flow coverage of debt and debt servicing
costs.
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Figure 3. CDS Spreads Consistent with Higher Default Risk of Ineligible Firms

The figure shows the distributions of logged CDS spreads on March 20, 2020 prior to the Fed CCF an-
nouncement date onMarch 23, 2020, across eligible and ineligible firms. Consistent with the fundamental
characteristics shown in Figures 1 and 2 and Tables 1 and 2, the market assessed ineligible firms to be
riskier than eligible firms. However, there is a significant area of overlap between the two sets of firms.
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4. Static Homogeneous Average Treatment Effects:
Difference-in-Differences Regressions

Static (homogeneous) treatment effects are estimated using a difference-in-differences
(DiD) regression. The specification is:

(1) yi,t = β0 + β1Eligiblei + β2Postt + β3(Eligiblei × Postt) + γi + ϵi,t

where yi,t is the outcome variable of interest, Eligiblei is an indicator variable with
value 1 if firm i was eligible for cash bond purchases under the CCFs, Postt is an indi-
cator variable equal to 1 if date t is 2020 or later, and γ are two-digit NAICS industry
fixed effects. The static treatment effect is given by β3. The DiD regressions are com-
puted over 2017 to 2023. Standard errors are clustered by issuer and date.

4.1. Potential Selection Bias and Parallel Trends

For both the DiD panel regression in this section, and the event study design in
Section 5, a key concern may be potential selection bias contaminating the estimated
treatment effect, in addition to any biases attributable to ignoring heterogeneity. An
obvious source of this selection bias may arise from the fact that eligibility for the
CCFs is essentially a proxy for IG status.
Consequently, the treatment variable may simply be capturing the differing dynam-

ics between IG and HY firms. Section 6 tackles this issue more seriously by using a
large set of controls as well as permitting arbitrary interactions between these con-
trols, motivated by Section 3.2 showing considerable overlap in the distributions of
eligible and ineligible firms along fundamentals and market-based measures of risk.
Nonetheless, the general lack of pre-trends observed in the event study regressions
in Section 5 suggests that the parallel trends assumption can be justified and hence,
the DiD regressions in this section identify the ATET. Section 6.6.1 includes further
discussion about selection bias.

4.2. Results

Table 3 reports the DiD regression results for cash holdings (% 2019Q4 assets) and
total debt (% 2019Q4 assets). Columns (1) and (3) show results without industry fixed-
effects, while Columns (2) and (4) include industry fixed effects, but the results are

13



Table 3. Debt Levels and Cash Holdings Broadly Increased, With Negative Treatment
Effect for Eligible Firms

Dependent Variables: Cash (% 2019Q4 Assets) Total Debt (% 2019Q4 Assets)
Model: (1) (2) (3) (4)

Variables
Constant 10.01∗∗∗ 36.37∗∗∗

(0.9476) (2.943)
Eligible (Fed CCFs) -4.477∗∗∗ -3.120∗∗∗ -10.54∗∗∗ -12.49∗∗∗

(0.9565) (1.009) (1.969) (2.010)
Post 2020 9.866∗∗∗ 9.903∗∗∗ 23.16∗∗∗ 23.17∗∗∗

(2.015) (2.005) (4.075) (4.082)
Eligible (Fed CCFs)× Post 2020 -7.295∗∗∗ -7.464∗∗∗ -6.141∗∗ -6.212∗∗

(2.042) (2.046) (2.733) (2.729)

Fixed-effects
NAICS (2-Digit) Yes Yes

Fit statistics
Observations 9,912 9,912 9,502 9,502
R2 0.03349 0.07229 0.07234 0.10256
Within R2 0.02740 0.07712

Clustered (Issuer & Date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the regression results from Equation 1 for cash holdings (% 2019Q4 assets) and total
debt (% 2019Q4 assets). The results suggest that firms broadly increased leverage while increasing cash
holdings in the treatment period (2020 onward). Additionally, the regressions pick up negative treatment
effects for eligible firms for both variables, suggesting that these firms increased cash holdings and debt
to a lesser extent than ineligible firms.

broadly consistent across the different specifications. The DiD regressions suggest
that eligible firms generally hold less cash and have less debt than ineligible firms.
Furthermore, the regressions suggest that firms broadly increased cash holdings
and leverage in the treatment period (2020 onward). This result can be seen by the
positive coefficient on the ‘Post 2020’ variable for ineligible firms and the sum of
the coefficients for ‘Post 2020’ and ‘Eligible (Fed CCFs)× Post 2020’ for eligible firms.
Interestingly, negative treatment effects are picked up on eligible firms’ relative cash
holdings and total debt. Hence, while eligible firms increased cash holdings and
leverage in the treatment period, they appear to have done so proportionally less
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than ineligible firms.

Table 4. Eligible Firms’ Payout Shows Positive Effect; No Effect Seen for Investment

Dependent Variables: Dividends and Buybacks (% 2019Q4 Assets) Capital Expenditures and R&D (% 2019Q4 Assets)
Model: (1) (2) (3) (4)

Variables
Constant 1.062∗∗∗ 2.456∗∗∗

(0.2192) (0.2956)
Eligible (Fed CCFs) 0.9875∗∗∗ 0.8328∗∗∗ -1.217∗∗∗ -1.150∗∗∗

(0.2433) (0.2519) (0.3103) (0.3168)
Post 2020 -0.1769 -0.1554 1.240∗ 1.305∗

(0.2470) (0.2473) (0.6771) (0.6843)
Eligible (Fed CCFs)× Post 2020 1.180∗∗∗ 1.158∗∗∗ -0.8407 -0.9016

(0.2377) (0.2345) (0.6597) (0.6642)

Fixed-effects
NAICS (2-Digit) Yes Yes

Fit statistics
Observations 9,641 9,641 9,798 9,798
R2 0.00907 0.01695 0.00988 0.03614
Within R2 0.00657 0.00882

Clustered (Issuer & Date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the DiD regression results for payouts (% 2019Q4 assets),investment (% 2019Q4 assets),
and capital expenditure (% 2019Q4 assets). Payouts are computed as the annual sum of dividends and
share buybacks. Investment is proxied as the annual change in the gross value of Property, Plant, and
Equipment. The results show a positive effect for firm payouts over the treatment period, while both
investment and capital expenditure exhibit null effects, despite the general increases in cash holdings
and leverage shown in Table 3.

Table 4 reports the DiD regression results for for payouts (% 2019Q4 assets) and
investment (% 2019Q4 assets). Payouts are computed as the annual sum of dividends
and share buybacks. Investment is proxied as the annual change in the gross value of
property, plant, and equipment.19 The results show a positive effect for firm payouts
over the treatment period, while investment exhibit nulls effects. Together, Tables 3
and 4 suggest that while firms generally increased leverage and cash in the treatment
period, this translated into higher payouts by eligible firms but not investment.

19In contrast, when investment is proxied by the annual change in the gross value of property,
plant, and equipment, a positive coefficient is estimated for the eligible indicator, while the coefficient
on the interaction term is negative. The causal ML results for the property, plant, and equipment
investment proxy is discussed further in Section 6 and reported in Appendix 8.12.
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5. Dynamic Homogeneous Average Treatment Effects: Event Study
Regressions with Two-Way Fixed Effects

To study the dynamic impact of the CCF intervention, I employ event study regres-
sions with two-way fixed effects. These have the functional form:

(2) yi,t =
–2∑
τ=–3

βτDτt Eligiblei +
3∑
τ=0

βτDτt Eligiblei + γi + ζt + ϵi,t

where yi,t is the outcome variable of interest, Dτ = 1{t – 2020 = τ} is an indicator
variable equal to 1 if the difference between the year t and 2020 is equal to τ, Eligi-
ble is an indicator variable with value 1 if the firm was eligible for direct cash bond
purchases under the CCFs, 0 otherwise, and finally, βτ are the coefficients being esti-
mated. Two-way unit and time fixed effects are given by γi for issuer and ζt for year,
respectively. The event study regressions are computed over the window 2017 to 2023.
Standard errors are clustered by issuer and year.
Consequently, βτ for τ ≥ 0 are dynamic treatment effects, while for τ < 0, βτ corre-

sponds to a placebo or falsification test. However, notice that τ = –1, t = 2019 is omit-
ted from the regression specification; this is the baseline comparison group, which
will also be the case for the two-step semi-parametric DiD estimator introduced in
Section 6. Additionally, as discussed in Section 4, the estimation of treatment effects
may suffer from potential selection bias and neglect of heterogeneity, which further
motivates the method used in Section 6. Nonetheless, there generally appears to be
a lack of pre-trends, which suggests that the parallel trends assumption holds for the
treatment period.
Figure 4 shows the dynamic effects of the CCF intervention on firm cash balances

as a proportion of total assets as of 2019Q4. The coefficient estimates prior to 2020
are null or positive, suggesting that either there are not meaningful differences in
relative cash holdings between eligible and ineligible firms or that eligible firms hold
more cash. However, after the onset of the pandemic, the dynamic treatment effects
are negative, reaching a bottom in 2021 before reverting. This suggests that ineligible
firms increased cash balances to a greater extent than eligible firms.
Figure 5 shows the dynamic effects on firm gross debt as a proportion of total as-

sets as of 2019Q4. The coefficient estimates in the pre-treatment period are null or
positive. Particularly, the recent coefficient estimates for 2017 and 2018 are positive,
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Figure 4. Eligible Firm Cash Holdings Show Relative Decline, Before Reverting

The figure plots the dynamic treatment effects from the regression given by Equation 2 for cash as
proportion of 2019Q4 assets. The coefficient estimates prior to 2020 are null or positive, suggesting that
either there are not meaningful differences in relative cash holdings between eligible and ineligible
firms or that eligible firms hold more cash. However, after the onset of the pandemic, the dynamic
treatment effects are negative, reaching a bottom in 2021 before reverting. This suggests that ineligible
firms increased cash balances to a greater extent than eligible firms.

indicating that eligible firms are more leveraged than ineligible firms prior to the
pandemic, with a possible declining trend. In the treatment horizon, the coefficients
become negative and continue to decrease, indicating greater relative increases in
leverage for ineligible firms.
Figure 6 plots the dynamic treatment effects for payouts as a portion of 2019Q4

total assets. The relative level of payouts between eligible and ineligible firms are
generally null for the pre-treatment period. In the treatment horizon, the point esti-
mates for the dynamic treatment effects are positive and increasing in the treatment
horizon.
Figure 7 plots the dynamic treatment effects for investment as a proportion of

2019Q4 total assets. In the pre-treatment period, the relative levels of investment
between eligible and ineligible firms were generally null in the pre-treatment period,
although it was possibly negative and statistically significant more recently. While
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Figure 5. Relative Leverage of Ineligible Firms Rise

The figure plots the dynamic treatment effects from the regression given by Equation 2 for total debt as a
proportion of 2019Q4 assets. The coefficient estimates in the pre-treatment period are null or positive.
Particularly, the recent coefficient estimates for 2017 and 2018 are positive, indicating that eligible firms
are more leveraged than ineligible firms prior to the pandemic, with a possible declining trend. In the
treatment horizon, the coefficients become negative and continue to decrease, indicating greater relative
increases in leverage for ineligible firms.

the point estimate falls in 2020, there is significant variation. It falls further in 2021
before starting to revert.

5.1. Discussion

Coefficients from the event study regressions are reported in Tables A1 in Ap-
pendix 8.1. The dynamic (homogeneous) treatment effects for cash and debt pre-
sented in this section broadly align with the static (homogeneous) treatment effects
shown in Table 3. That is, the dynamic (homogeneous) treatment effects are con-
sistently negative. Likewise, the dynamic (homogeneous) treatment effects from
payouts are consistent with the positive effect found in Table 4. Interestingly, while
the static (homogeneous) treatment effect was null over the entire treatment hori-
zon, as seen in Table 4, the dynamic (homogeneous) treatment effects for investment
were negative for 2021, 2022, and 2022. Moreover, the standard errors are particularly
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Figure 6. Relative Payouts by Eligible Firms Rise

The figure plots the dynamic treatment effects from the regression given by Equation 2 for payouts as
a portion of 2019Q4 total assets. The relative level of payouts between eligible and ineligible firms are
generally null for the pre-treatment period. In the treatment horizon, the point estimates for the dynamic
treatment effects are positive and increasing in the treatment horizon.

wide for investment, suggesting the presence of heterogeneous effects.
Overall, while the general absence of pre-trends may suggest that parallel trends

may hold in the treatment period, there may still be concerns about potential selec-
tion bias or heterogeneous effects. Eligible issuers may have better navigated the
pandemic by taking on relatively lower leverage and increasing cash buffers to a
lesser extant, while being more cautious about investment and supporting payouts
more as the crisis faded. The next section attempts to better address potential threats
to identification from regression designs by using a deep nets in a setting with high-
dimensional controls and flexible functional forms, in addition to accounting for
heterogeneous effects.
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Figure 7. Eligible Firms Display Relative Decline in Investment in 2020 Before Rever-
sion

The figure plots the dynamic treatment effects for investment as a proportion of 2019Q4 total assets. In
the pre-treatment period, the relative levels of investment between eligible and ineligible firms were
generally null in the pre-treatment period, although it was possibly negative and statistically significant
more recently. While the point estimate falls in 2020, there is significant variation. It falls further in 2021
before starting to revert.
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6. Dynamic Heterogeneous Average Treatment Effects: Two-Step
Semi-Parametric DiD Estimators

6.1. Overview of Empirical Design

As mentioned, a key concern of the regression frameworks in Sections 4 and 5
is the potential selection bias that is associated with the treatment variable being a
proxy for IG status. IG firms may naturally have been more resilient than HY firms,
taking on less leverage and increasing cash to a lesser extent, while maintaining firm
payouts. The ideal experiment would compare two virtually identical firms that only
differ based on treatment assignment (e.g. eligibility for the CCFs).
The causal ML approach used in this section attempts to take this idea to furthest

extent possible by using a high-dimensional set of covariates that far exceeds the
number of observations without imposing variable selection or functional form re-
strictions on the interactions across variables beforehand. The novel two-step semi-
parametric DiD estimator for computing dynamic (heterogeneous) treatment effects
presented here is comparable to an event study design with two-way fixed effects,
which computes dynamic (homogeneous) treatment effects. The structural equation
for potential outcomes consists of a linear combination of a non-parametric inter-
cept term and the interaction between a treatment indicator and non-parametric
slope term. The intercept term corresponds to the outcome of ineligible firms, or
potential outcome of eligible firms had they not received treatment. The slope term
corresponds to the unit-level heterogeneous treatment effect, otherwise called the
CATE for eligible firms or the counterfactual, potential CATE for ineligible firms.
In the first step, the non-parametric intercept and slope terms are estimated using

deep nets, as is the propensity score, which is a key ingredient in the estimators for
the coefficients. The propensity score is the probability of a firm being classified as
eligible given the high-dimensional set of characteristics. Deep nets are used because
ability to approximate continuous functions of real variables arbitrarily well, show-
ing exceptional performance in this regard (Chronopoulos et al. 2023). Farrell, Liang,
and Misra (2021a) provides the theoretical justification for using deep nets to esti-
mate non-parametric terms in the first step of two-step semi-parametric estimation
and inference. Nonetheless, the results should be similar if using other high-quality
ML algorithms, such as random forests (Belloni, Chernozhukov, and Hansen 2014;
Chernozhukov et al. 2018).
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However, because of the bias induced by regularization in a high-dimensional
setting, an IF estimator, or Neyman orthogonal score function, is required. The
expression for the DiD estimator used in this section is derived from the general
formulation of IF estimators given in Farrell, Liang, and Misra (2021b). In addition,
cross-fitting, the estimation and evaluation of models across different samples, is
used to prevent overfitting and produce unbiased estimates (Chernozhukov et al.
2018). Section 6.3 goes into the requirements for identification of parameter esti-
mates in greater detail, the key requirements are that the unconfoundedness (or
selection on observables) assumption and the overlap condition holds (Farrell, Liang,
and Misra 2021a). Given the DiD setup, unconfoundness can be relaxed to the con-
ditional versions of the no anticipation and parallel trends to identify the average
treatment effect on the treated (ATET), instead of the average treatment effect (ATE)
(Chernozhukov et al. 2024). Indeed, the general lack of pre-trends in the event study
regressions in Section 5 suggests that conditional parallel trends is a reasonable as-
sumption. Moreover, estimates of the ATE and ATET are not statistically different
from zero, as shown in Appendix 8.10.
The empirical design is used not only to address potential concerns around selec-

tion bias but also to account for the effects of heterogeneity. As mentioned, CATEs
for all firms are recovered. The IF estimator appropriately weights the individual
heterogeneous effects when constructing the estimate of the ATE. In addition, the
knowledge of CATEs allows for the study the effects of counterfactual policy target-
ing, which is undertaken in Section 7. Counterfactual effects are also identified, so
long as unconfoundedness and overlap holds (Farrell, Liang, and Misra 2021a). If un-
confoundedness does not hold, the estimator is still valid and recovers the predictive
effects from alternative policy schemes. This is still useful for policy analysis and
diagnostics.

6.2. Modelling Framework

Let F denote the realized information for firms by the end of 2019. Let h = t – 2020,
where t is the year. Define ∆ yhi = yhi – y–1i , which is the difference in the outcome
variable for some year 2020 or later and its value in 2019. I restrict attention to all
covariates realized by the end of 2019, with less than 1% of observations missing:
xi ⊂ F. I further consider an expanded list of covariates by relaxing the tolerance for
missing observations to 10%. Binary treatment, zi, is defined to equal 1 if a firm’s cash
bonds were eligible for direct purchase by the Fed CCFs at the announcement date.
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All together this gives the following potential outcomes model:

(3) ∆ yhi = α(xi) + β(xi)zi + ei

Note that this is a linear combination of a non-parameteric intercept term, α(xi), and
the interaction between a non-parameteric slope term, β(xi), and a binary variable,
zi.
Let Yh(z) be the potential outcome at time h where Z denotes the treatment status:

E[∆Yh|X = x, Z = z] = E[∆Yh(z)|X = x, Z = z] = E[∆Yh(z)|X = x] = α(x) + β(x)z

where the first equality follows from the consistency assumption (the potential out-
come is consistent with the treatment assignment) and the second equality follows
from the unconfoundedness and overlap assumptions (these are discussed further in
Section 6.3).
Taking the difference in the differences in the outcome variables yields:

E[∆Yh(1) – ∆Yh(0)|X = x] = β(x)

Hence, the CATE is given by β(x) and ATE, incorporating in heterogeneity, is given
by:

(4) µ = E[β(x)]

Given the DiD setting, the assumption of unconfoundedness can be relaxed to the
weaker assumptions of no anticipation and parallel trends, conditional on pre-treatment
covariates.20 This would identify the ATET, as is the case in Sections 4 and 5 (Cher-

20In effect, these assumptions require that, conditional on pre-treatment covariates, firms do not
anticipate the treatment (CCFs) in 2019 and absent the treatment, comparable firms’ dynamics would
have evolved similarly.
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nozhukov et al. 2024).21 22 The general lack of pre-trends observed in the event study
regressions in Section 5 suggests that the parallel trends assumption can be justified.
I also estimate the quantity, E[α(x)], and refer to it as the base effect. Plotting the

evolution of the base effect gives insight into the dynamics for outcome variables for
ineligible firms, as well as the potential outcome for eligible firms absent treatment.
Let the parameter vector be given by θ = (α,β), then the general expression for the

influence function estimator follows from Farrell, Liang, and Misra (2021b):

(5) ψ(∆ yhi , zi, xi, θ(xi)) = H(xi, θ(xi)) – (∇θH)(E[l θθ|X = x]–1l θ)

where l the loss function, l θ = ∂
∂θ l is the score function, and l θθ = ∂2

∂θ∂θ′ l is the
Hessian.
Given a mean squared error loss function, we can express l as:

l (∆ yh, z, θ(x)) = l (∆ yh, z,α(x),β(x)) =
1
2
(∆ yh – α(x) – β(x)z)2

Consequently, the expression for the score is:

l θ = –

(
1

z

)
(∆ yh – α(x) – β(x)z)

21 The ATET is given by the difference between the difference in the outcome variables for treated
and untreated firms, averaging over the entire sample. This is expressed as:

ATET = E[E[∆Yh(1)|Z = 1,X] – E[∆Yh(0)|Z = 0,X]]

= E[E[α(x) + β(x)|Z = 1,X] – E[α(x)|Z = 0,X]]

= E[α(x) + β(x)|Z = 1] – E[α(x)|Z = 0]

Hence, the ATET is equal to the average of the CATEs among treated firms if the average of the poten-
tial outcome absent treatment is the same between treated and untreated firms. Section 8.5 derives
the IF estimator for the ATET. Section 8.10 compares the ATE and ATET estimates for the benchmark
model across all outcome variables, showing that the two are similar with no statistically significant
difference in any instance.

22Another motivation of using a two-step semi-parametric DiD estimator is that adding controls
to the linear models in Sections 4 and 5 may not recover causal effects without strong restrictions
functional form and heterogeneity (Caetano et al. 2024).
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And likewise, for the Hessian:

l θθ =

(
1 z

z z2

)

Let Λ(x) = E[l θθ|X = x]. Hence,

(6) Λ(x) =

(
1 p(x)

p(x) p(x)

)

where,

(7) p(x) ≡ Pr(z|X = x)

is the propensity score, or the probability of a firm being treated given its features.
The derivation for the ATE involves settingH(x, θ(x)) = β(x) and is shown in Ap-

pendix 8.4. The resultant estimator is analogous to the doubly-robust DiD estimator
of Sant’Anna and Zhao (2020) in a non-ML setting and the DML DiD estimator of
Chang (2020) for partially linear models.23 The setup for all three models is the basic
2× 2, or N × 2, difference in differences model with 2 units, which are either treated
or control, or N units split into these groups, and 2 time periods, pre- and post- treat-
ment. All three estimators have the doubly-robust property: they are consistent es-
timators of the average treatment effect if either the potential outcome model given
by Equation 3 or the propensity scores, Equation 7, are correctly estimated, but not
necessarily both.
Consequently, in the results presented here, the dynamic (heterogeneous) base

and treatment effects are computed by re-running the two-step semi-parameteric
model period by period over the treatment horizon. Alternatively, this can be ex-
tended to estimating the dynamic effects simultaneously in a panel version of two-
step semi-parametric estimators, as in Chronopoulos et al. (2023). Identification is
similar in both cases (Miller 2023).

6.3. Discussion on Identification

As mentioned, Farrell, Liang, and Misra (2021a) provide the theoretical justification
for using deep nets in the first step of two step estimation when inference is con-

23This corresponds to case where β(x) = β is homogeneous in Equation 3.
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ducted on the second step using an influence function estimator, as in Equation 5.
In addition, they mention two requirements the estimation of a potential outcomes
model, as in Equation 3, need to satisfy in order to identify causal parameters of
interest. These are unconfoundedness (i.e. selection on observables) and overlap.24

6.3.1. Unconfoundedness

An advantage of using deep nets is that it allows for the consideration of a high-
dimensional feature space along with arbitrary interactions and transformations
among potential covariates. The list of firm characteristics used in estimation is
given by Tables A2 and A3. In addition, indicator variables for industry classification
are used. The histories of data used range from 1 year to 10 years. To accommodate
such a high-dimensional feature space, deep architectures are used for the neural
networks, as shown in Tables A4 and A5. Consequently, the claim is that any unob-
served variable correlated with the treatment, and potentially biasing the results, is
likely to be spanned by the high-dimensional feature space, the transformation of
features, and their interactions. As such, the selection on observables assumption is
likely satisfied.
As previously noted, given the DiD setup, the assumption of unconfoundedness

can be relaxed to the weaker assumptions of conditional no anticipation and paral-
lel trends. This requires that, conditional on pre-treatment covariates, comparable
firms did not anticipate the CCF interventions in 2019, which is reasonable given the
unprecedented nature of the pandemic, and that treated firms would have had simi-
lar dynamics to their untreated counterparts, absent intervention. The general lack
of pre-trends observed in the event study regressions in Section 5 suggests that the
parallel trends assumption can be justified. The cost of moving to these weaker as-
sumptions is that the model identifies the ATET rather than the ATE (Chernozhukov
et al. 2024). Section 5 suggests that the parallel trends assumption can be justified.
Section 8.10 compares the ATE and ATET estimates, finding statistically negligible
differences.

24The assumption of consistency is also required to ensure that observed outcomes correspond to
the assigned treatment, which is also assumed here.
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6.3.2. Overlap

The overlap condition is satisfied if propensity scores, given by Equation 7 are
bounded away from zero and one. Figures 1, 2, and 3 help support the argument that
the overlap condition is satisfied. Graphically, both the data on firm characteristics
and CDS spreads shows a significant overlap in distributions between eligible and
ineligible firms.
Indeed, the CCF’s reliance on ratings to determine eligibility is critical to the iden-

tification strategy. As argued by several papers, ratings lag and can be predicted by
fundamental data (Altman and Rijken 2004), given ratings agencies’ desire for rat-
ings stability. In addition, there is some evidence of a loosening of ratings standards
heading into the pandemic. Çelik, Demirtaş, and Isaksson (2020) document that
within-rating leverage ratios increased by 2019, as the number of BBB-rated firms in-
creased. Additionally, downgrade frequency declined relative to upgrades, with BB+
rated issuers having the highest probability of a 1-notch upgrade within a year and
BBB- rated issuers having the lowest probability of a 1-notch downgrade. Consistent
with this, Altman (2020) finds that based on 2019 data, 34% of BBB-rated firms can be
classified as HY based largely on fundamental characteristics based on the Altman
Z-score.
In the same vein, CDS spreads lead and predict future ratings changes CDS spreads

(Lee, Naranjo, and Velioglu 2018; Lee, Naranjo, and Sirmans 2021). Not only does
Figure 3 show a significant overlap between eligible and ineligible firms’ CDS spread
distribution, the support of the former lies almost entirely within the support of
the latter. This suggests had the eligibility criteria been determined by CDS spreads
rather than credit ratings, many eligible firms would have been deemed ineligible,
and vice-versa.
In summary, there is rich overlap in the feature space across eligible and ineligi-

ble firms. This suggests that the overlap condition is satisfied and allows for the IF
estimator given by Equation 5 to be well-defined.

6.4. Estimation Procedure

I obtain features for the deep nets from the Financial Ratios Suite by WRDS. Quar-
terly variables with less than 1%missing observations are used with histories going
back 1, 5, and 10 years. Table A2 in the Appendix reports the list of 37 features where
less than 1% of observations are missing over a 10 year history from 2010Q1 to 2019Q4.
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Figure 8. Deep Net Architecture for the Potential Outcomes Model

The figure represents the deep net architecture for estimating the parameters in the potential outcomes
model given by Equation 3. Specific values for the number of inputs and hidden layer architecture are
reported in Table A4 for models with features with less than 1%missing observations and Table A5 for
models with features with less than 10%missing observations.
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Figure 9. Deep Net Architecture for Propensity Scores

The figure represents the deep net architecture for estimating the propensity scores given by Equation
7. Specific values for the number of inputs and hidden layer architecture are reported in Table A4 for
models with features with less than 1% missing observations and Table A5 for models with features with
less than 10%missing observations.
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As a robustness check, 23 additional features are added by increasing the tolerance of
missing observations to 10%; these are reported in Table A3. Missing information is
replaced with the quarter-industry median and dummy variables are added to track
missing data. Additionally, dummy variables for two-digit NAICS industry codes are
used.
Figure 8 illustrates the architecture used to estimate the parameters for Equation

3. Table A4 reports specific values for the number of inputs and the hidden layer ar-
chitectures associated with the models with covariate histories of 1, 5, and 10 years,
respectively. Propensity scores are estimated in a similar fashion and with the same
architecture, as seen in Figure 9. The deep net models for the parameters for Equa-
tion 3 use rectified linear (ReLU) activation functions within the hidden layers. A
linear output layer combines the parameter estimates and treatment indicator to get
an estimated outcome. Then, a mean-squared error loss function is applied to the
estimated and actual outcomes. The deep net models for propensity scores use hy-
perbolic tangent (tanh) activation functions within the hidden layers with a sigmoid
output layer and a binary cross-entropy loss function. This is done to have propensity
scores bounded within zero and one so that the IF estimator is well-defined.
The procedure to estimate any parameter of interest requires three folds of cross-

fitting. Cross-fitting involves estimating deep nets on one set of data and evaluating it
on another. This is done to prevent over-fitting and to produce unbiased estimators
(Chernozhukov et al. 2018). The dataset is split into three random samples of equal
size. A deep net is trained on each sample to produce models for the parameters in
Equation 3. Separately, deep nets are trained to produce propensity scores. Finally,
the influence function is computed by evaluating data from a third sample on models
for the CATEs and propensity scores each trained on different samples.25 Given the
cross-fit procedure, dropout regularization is used in training the deep nets to reduce
overfitting and so, increase efficiency.26

To further improve efficiency, I run multiple cross-fit iterations. I take the median
of estimators computed acrossM cross-fit partitions and its associated variance:27

µ̃0 = Median
(
(µ0,m)m∈[M]

)
25Sample code demonstrating the ability of the estimator to recover parameters in simulated data

can be found here: https://github.com/rmmomin/causal-ml-auto-inference.
26The reported results are frommodels trained with a dropout rate of 20% but similar results are

obtained by using a dropout rate equal to 30%, 40%, or 50%.
27See https://docs.doubleml.org/stable/guide/resampling.html.
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σ̂2 =
√
Median

(
σ̂2m + (µ̃0,m – µ̃0)2

)
m∈[M]

where µ̃0 is the parameter of interest, µ̃0,m is the parameter estimate corresponding
to partitionm of cross-fitting, and σ̂2 is the variance. The asymptotic standard error
is given by σ̂2/

√
N, where N is the number of observations. In the reported results, 10

cross-fit partitions are generated for each deep net estimation.
Additionally, as mentioned in Section 6.2, the model is estimated period by period

over the treatment horizon. An extension to the framework would be to estimate
these effects simultaneously in a panel setting of the two-step semi-parameteric
model, as in Chronopoulos et al. (2023).

6.5. Base Effects

To estimate the base effect, set H(x, θ(x)) = α(x) in Equation 5. Appendix 8.3 provides
details on the derivation of the estimator.

Figure 10. Large Base Effect with Increase in Cash Holdings

The figure plots the base effects for the change in cash holdings, as a percent of 2019Q4 assets. The model
above uses 10 years of feature history and 1% tolerance formissing observations. Details on its architecture
is reported in Table A4 in theAppendix. Table A6 reports results across allmodel specifications. Consistent
with the DiD regressions reported in Table 3, a large base effect is identified for 2020 onwards.

Figure 10 plots the base effects for the change in cash holdings, as a percent of
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2019Q4 assets, using a model with 10 years of feature history and 1% tolerance for
missing observations. Details on its architecture is reported in Table A4 in the Ap-
pendix. Consistent with the DiD regressions reported in Table 3, a large base effect
is identified for 2020 onwards. However, the dynamics of cash holdings suggests that
these peaked for all firms in 2021 and then began to fall, perhaps as uncertainty from
the pandemic and so, demand for precautionary liquidity began to fade. The finding
of large, positive base effects, as well as its dynamics, are largely consistent across
different model specifications, as shown in Table A6.

Figure 11. Large Base Effect with Increase in Total Debt

The figure plots the base effects for the change in debt, as a percent of 2019Q4 assets. The model above
uses 10 years of feature history and 1% tolerance for missing observations. Details on its architecture is
reported in Table A4 in the Appendix. Table A7 reports results across all model specifications. Consistent
with the DiD regressions reported in Table 3, a large base effect is identified for 2020 onwards.

Figure 11 plots the base effects for the change in debt, as a percent of 2019Q4 assets,
using a model with 10 years of feature history and 1% tolerance for missing observa-
tions. Details on its architecture is reported in Table A4 in the Appendix. Consistent
with the DiD regressions reported in Table 3, a large base effect is identified for 2020
onwards. In contrast to cash holdings, the base effects for leverage has remain ele-
vated. This suggests that ineligible firms did not deleverage as their cash reserves fell.
The finding of large, positive base effects, as well as an increasing trend, are largely
consistent across different model specifications, as shown in Table A7.
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Figure 12. Payout Base Effect Initially Negative Then Increases

The figure plots the base effects for the difference in annual payouts versus 2019, scaled by 2019Q4 assets.
The model above uses 10 years of feature history and 1% tolerance for missing observations. Details
on its architecture is reported in Table A4 in the Appendix. Table A8 reports results across all model
specifications. In contrast to the null results picked up by the DiD regressions reported in Table 4, the
base effect here changes over the observation period, initially negative in 2020 and then increasing.

Figure 12 plots the base effects for the difference in annual payouts versus 2019,
scaled by 2019Q4 assets, using a model with 10 years of feature history and 1% tol-
erance for missing observations. Details on its architecture is reported in Table A4
in the Appendix. In contrast to the null results picked up by the DiD regressions re-
ported in Table 4, the base effect here changes over the observation period, initially
negative in 2020 and then increasing. This is consistent with firms initially reducing
payouts to preserve liquidity and then resuming them as conditions improved. These
results are largely consistent across different model specifications, as shown in Table
A8.
Figure 13 plots the base effects for the difference in annual investment versus 2019,

scaled by 2019Q4 assets, using a model with 10 years of feature history and 1% tol-
erance for missing observations. Details on its architecture is reported in Table A4
in the Appendix. Consistent with the positive effect found for the post period in the
DiD regressions reported in Table 4, positive effects are generally found over the
treatment period. However, these results are not robust to an alternative proxy for in-
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Figure 13. Investment Base Effect Null then Increasing

The figure plots the base effects for the difference in annual investment versus 2019, scaled by 2019Q4
assets. The model above uses 10 years of feature history and 1% tolerance for missing observations.
Details on its architecture is reported in Table A4 in the Appendix. Table A9 reports results across all
model specifications. Consistent with the positive effect found for the post period in the DiD regressions
reported in Table 4, positive effects are generally found over the treatment period. Figure A1 plots the
base effects corresponding to proxying investment with the annual change in gross property, plant, and
equipment. In contrast to here, negative base effects are estimated for 2020 and 2021, which then become
null for 2022 and 2023.

vestment. Figure A1 plots the base effects corresponding to proxying investment with
the annual change in gross property, plant, and equipment. In contrast to here, neg-
ative base effects are estimated for 2020 and 2021, which then become null for 2022
and 2023. These results are largely consistent across different model specification, as
shown in Table A20.
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6.6. ATE with Heterogeneity

To estimate the ATE, setH(x, θ(x)) = β(x) in Equation 5. For each cross-fit fold, the
estimator becomes:
(8)

µ̂s =
1
N

∑
ψ(∆ yh, z, x, θ) =

1
N

∑[
β(x) +

z(∆ yh – α(x) – β(x)z)
p(x)

–
(1 – z)(∆ yh – α(x))

1 – p(x)

]

Appendix 8.4 provides details on the derivation. The final estimate of Equation 4 is
then obtained by averaging the estimates from each fold:

(9) µ̂ =
1
3
∑

µ̂s

While the ATE is identified under the assumption of unconfoundedness, this assump-
tion can be relaxed to conditional no anticipation and parallel trends to identify the
ATET instead. The general lack of pre-trends observed in the event study regressions
in Section 5 suggests that the parallel trends assumption can be justified. Section 8.10
compares the ATE and ATET estimates, finding statistically negligible differences.
Figure 14 plots the average treatment effects for the change in cash holdings over

different horizons, accounting for heterogeneity, using a model with 10 years of fea-
ture history and 1% tolerance for missing observations. Details on its architecture is
reported in Table A4 in the Appendix. Large negative treatment effects are estimated
over the entire horizon, consistent with static (homogeneous) treatment effects es-
timated by the DiD regressions and the dynamic (homogeneous) treatment effects
estimated by the event study regressions. These are summarized in Table 5. Table
A10 reports the results across different model specifications, showing that the esti-
mates are robust.
Figure 15 plots the average treatment effects for change in total debt over different

horizons, accounting for heterogeneity, using a model with 10 years of feature history
and 1% tolerance for missing observations. Details on its architecture is reported
in Table A4 in the Appendix. While an initial null effect is picked up for 2020, this
becomes negative and large for the remainder of the horizon. This suggests that both
eligible and ineligible firms initially increased leverage in 2020, but subsequently,
eligible firms began deleveraging, while ineligible firms did not. Table 6 compares
the treatment effect estimates across different models and suggests that the results
are broadly in line. These results are robust to other model specifications, as shown
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Figure 14. Cash ATEWith Heterogeneity Shows Large Negative Effect

The figure plots the average treatment effects for the change in cash holdings, as a percent of 2019Q4
assets. This corresponds to the estimator reported in Equation 9. Themodel above uses 10 years of feature
history and 1% tolerance for missing observations. Details on its architecture is reported in Table A4 in
the Appendix. Table A10 reports results across all model specifications. Large negative treatment effects
are estimated over the entire horizon. Table 5 compares the treatment effect estimates across different
models and suggests that results are broadly in line.

in Table A11.
Figure 16 plots the average treatment effects for the difference in annual payouts

versus 2019, as a percent of 2019Q4 assets. The estimates are from the model using 10
years of feature history and 1% tolerance for missing observations; complete details
on its architecture is reported in Table A4 in the Appendix. The payout treatment
effect is initially positive in 2020, then null for 2021, and again positive for 2022 and
2023. Table 7 compares the treatment effect estimates across different models. Inter-
estingly, the point estimates for the dynamic (heterogeneous) treatment effects are
smaller than both the static (homogeneous) treatment effects and the dynamic (het-
erogeneous) treatment effects, but as are the standard errors. In general, this could
suggest that the selection bias for the regression models results in an upward bias
to treatment effects, consistent with IG firms being more resilient and maintaining
payouts. These results are consistent across models using 5 and 10 years of feature
history, as seen in Table A12.
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Table 5. Cash Treatment Effect Comparison

Treatment Effect Estimates
Cash (% 2019Q4 Assets)

Year Static (Homogeneous) Dynamic (Heterogeneous) Dynamic (Homogeneous) Difference
(1) (2) (1)-(2)

2020 -3.00 -3.82 0.82
(1.01) (0.79)

2021 -11.05 -9.52 -1.53
(4.12) (2.42)

2022 -7.51 -6.92 -0.59
(2.95) (2.27)

2023 -3.52 -4.01 0.48
(1.46) (1.09)

Eligible× -7.46
Post 2020 (2.05)
Standard-errors in parentheses

The table reports the treatment effect estimates for cash, as a percent of 2019Q4, across the three models
examined in this paper. The static (homogoeneous) treatment effect comes from the DiD regressions
reported in Table 3, while the dynamic (homogeneous) treatment effects correspond to the event study
regressionswith two-wayfixed effects, reported in Table A1 and shown in Figure 4. The different treatment
effect estimates are broadly in line.

Table 6. Debt Treatment Effect Comparison

Treatment Effect Estimates
Total Debt (% 2019Q4 Assets)

Year Static (Homogeneous) Dynamic (Heterogeneous) Dynamic (Homogeneous) Difference
(1) (2) (1)-(2)

2020 -0.91 -1.66 0.75
(1.11) (0.65)

2021 -7.04 -5.95 -1.09
(2.39) (2.30)

2022 -9.34 -9.08 -0.25
(3.00) (2.59)

2023 -8.64 -8.47 -0.17
(2.82) (1.95)

Eligible× -6.21
Post 2020 (2.73)
Standard-errors in parentheses

The table reports the treatment effect estimates for debt, as a percent of 2019Q4, across the three models
examined in this paper. The static (homogoeneous) treatment effect comes from the DiD regressions
reported in Table 3, while the dynamic (homogeneous) treatment effects correspond to the event study
regressionswith two-wayfixed effects, reported in Table A1 and shown in Figure 5. The different treatment
effect estimates are broadly in line.
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Figure 15. Debt ATE With Heterogeneity Negative After 2020

The figure plots the average treatment effects for change in total debt, as a percent of 2019Q4 assets. This
corresponds to the estimator reported in Equation 9. Themodel above uses 10 years of feature history and
1% tolerance for missing observations. Details on its architecture is reported in Table A4 in the Appendix.
Table A11 reports results across all model specifications. While an initial null effect is picked up for 2020,
this becomes negative and large for the remainder of the horizon. Table 6 compares the treatment effect
estimates across different models and suggests that the results are broadly in line.

Figure 17 plots the average treatment effects for the difference in annual invest-
ment versus 2019, scaled by 2019Q4 assets, using a model with 10 years of feature
history and 1% tolerance for missing observations. Details on its architecture is re-
ported in Table A4 in the Appendix. Table A13 reports results across all model speci-
fications, showing that null-to-negative effects are estimated in every instance. Table
8 compares the different treatment effects estimated by each model, showing that
incorporating high-dimensional controls and heterogeneity actually increases point
estimates for the dynamic effects. Figure A2 and Table A21 show the treatment effect
dynamics when proxying investment by the annual change in gross property, plant,
and equipment. For this proxy, null effects are estimated for every specification.
The dynamic (heterogeneous) treatment effects estimated in this section suggest

that eligible firms increased cash holdings to a lesser extent than ineligible firms and
also took on less leverage, as well. These are consistent with both the static (homo-
geneous) treatment effects estimated by the DiD panel regression in Section 4 and
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Figure 16. Payout ATE Generally Positive

The figure plots the average treatment effects for the difference in annual payouts versus 2019, as a
percent of 2019Q4 assets. This corresponds to the estimator reported in Equation 9. The model above
uses 10 years of feature history and 1% tolerance for missing observations. Details on its architecture
is reported in Table A4 in the Appendix. Table A12 reports results across all model specifications. The
payout treatment effect is initially positive in 2020, then null for 2021, and again positive for 2022 and 2023.
Table 7 compares the treatment effect estimates across different models. While the treatment effects are
comparable, the standard errors for the dynamic (heterogeneous) treatment effects are smaller.

the dynamic (homogeneous) treatment effects estimated by the event study regres-
sions with two-way fixed effects in Section 5. A comparison of the dynamic treatment
effects across the two designs reveals relatively similar point estimates with no uni-
form direction in the difference (positive or negative).
In contrast, the dynamic (heterogeneous) treatment effects estimated in this sec-

tion are generally smaller than those estimated in Section 5, with the exception of in-
vestment. This could be due to the effects of either selection bias, which is accounted
for by high-dimensional controls, or the effects of heterogeneity. For payouts, the
lower point estimates are also accompanied by smaller standard errors and reinforce
the result that eligible firms had relatively higher levels of payouts. Even though the
dynamic (heterogeneous) treatment effects for investment are larger, these are still
null or negative, similar to the dynamic (homogeneous) treatment effect found in
2020 in Section 5. An alternative proxy for investment reinforces this conclusion.
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Table 7. Payout Treatment Effect Comparison

Treatment Effect Estimates
Payout (% 2019Q4 Assets)

Year Static (Homogeneous) Dynamic (Heterogeneous) Dynamic (Homogeneous) Difference
(1) (2) (1)-(2)

2020 0.14 0.54 -0.40
(0.06) (0.34)

2021 0.24 0.65 -0.41
(0.25) (0.36)

2022 0.83 0.99 -0.16
(0.27) (0.37)

2023 0.50 0.86 -0.36
(0.16) (0.39)

Eligible× 1.16
Post 2020 (0.23)
Standard-errors in parentheses

The table reports the treatment effect estimates for payout, as a percent of 2019Q4, across the threemodels
examined in this paper. The static (homogeneous) treatment effect comes from the DiD regressions
reported in Table 4, while the dynamic (homogeneous) treatment effects correspond to the event study
regressionswith two-way fixed effects, reported in Table A1 and shown in Figure 6. The point estimates for
the dynamic (heterogeneous) treatment effects are smaller than both the static (homogeneous) treatment
effects and the dynamic (heterogeneous) treatment effects, but as are the standard errors. The systematic
negative difference in the point estimates can be attributed to either selection bias in the regression
models which is better controlled for by covariates or heterogeneous effects.

6.6.1. Discussion on Selection Bias for Investment

Selection bias for investment may be positive or negative. Given that the treatment
was assigned on the basis of IG status, positive selection bias may arise if IG rated
firms have more investment opportunities, while negative selection bias may arise
if managers of IG firms are more cautious/disciplined about investment, as exam-
ples. The lack of pre-trends in the event study regressions in Section 5 suggests that
there is no systematic difference in relative investment in the pre-treatment period.
The causal ML estimator with a high-dimensional control structure presented in this
section should provide additional safeguards against this by spanning any potential
omitted variable. To the extent that the effect of such omitted variables are not con-
trolled, then a positive selection bias due to investment opportunities would suggest
that the estimated treatment effect is biased upwards. Given that negative or null ef-
fects are found for both investment proxies, this should strengthen the argument that
the Fed CCFs did not meet its objectives of improving real outcomes.
However, if negative selection bias is present, then the results shown here underes-
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Figure 17. Investment ATEWith Heterogeneity Consistent With Previous Estimates

The figure plots the average treatment effects for the difference in annual investment versus 2019, scaled
by 2019Q4 assets. This corresponds to the estimator reported in Equation 9. The model above uses 10
years of feature history and 1% tolerance for missing observations. Details on its architecture is reported
in Table A4 in the Appendix. Table A13 reports results across all model specifications, null-to-negative
treatment effects are estimated, particularly for the models with longer covariate histories. Table 8
compares the different treatment effects estimated by each model, showing that incorporating high-
dimensional controls and heterogeneity increases the point estimates for the dynamic effects. Figure A2
and Table A21 show the treatment effect dynamics when proxying investment by the annual change in
gross property, plant, and equipment. For this proxy, null effects are estimated for every specification.

timate the true effect and do not necessarily provide evidence that Fed CCF eligibility
failed to spur investment. This would require that differencing out the trend in the
outcome variable for ineligible firms as well as controlling for a high dimensional
set of variables fails to properly address (negative) selection effects. More precise
identification strategies exploiting plausibly exogenous variation may better assuage
fears around selection bias but would come at the cost of external validity. Uniquely,
the casual ML approach presented here allows for the estimation of heterogeneous
effects and permits counterfactual analysis.
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Table 8. Investment Treatment Effect Comparison

Treatment Effect Estimates
CAPEX and R&D (% 2019Q4 Assets)

Year Static (Homogeneous) Dynamic (Heterogeneous) Dynamic (Homogeneous) Difference
(1) (2) (1)-(2)

2020 0.09 -0.49 0.59
(0.15) (0.58)

2021 -0.27 -1.88 1.61
(0.20) (0.80)

2022 -0.48 -0.99 0.51
(0.19) (0.41)

2023 -0.31 -0.62 0.31
(0.21) (0.29)

Eligible× -0.90
Post 2020 (0.66)
Standard-errors in parentheses

The table reports the treatment effect estimates for investment, as a percent of 2019Q4, across the
three models examined in this paper. The static (homogeneous) treatment effect comes from the DiD
regressions reported in Table 4, while the dynamic (homogeneous) treatment effects correspond to the
event study regressions with two-way fixed effects, reported in Table A1 and shown in Figure 7. The point
estimates for the dynamic (heterogeneous) treatment effects are larger than the dynamic (homogeneous)
treatment effects. The systematic positive difference in the point estimates can be attributed to either
selection bias in the regression models which is better controlled for by covariates or heterogeneous
effects.
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7. Counterfactual Targeting

Let z be the realized vector of treatment indicators and z′ a vector of counterfac-
tual treatments. To assess the benefits of counterfactual targeting, I focus on the
difference in the average of the CATEs between the counterfactual target set and the
realized set of targeted firms: E[β(x)(z′ – z)]. Hence, set H(x, θ(x)) = β(x)(z′ – z) in Equa-
tion 5. The derivation for the closed-form of the IF estimator is given in Appendix
8.6. It is identical to the ATE IF estimator except for a term (z′ – z) multiplying the
summands in Equation 8. Although unconfoundedness can be relaxed to conditional
parallel trends and no anticipation to identify the ATET instead of the ATE, uncon-
foundedness is needed here to have a causal interpretation of the counterfactual
effect of changing policy targeting. If this fails to hold, the estimator is still valid, but
instead identifies a predictive effect, which would still be useful for policy analysis.
A simple framework, such as in Brunnermeier and Krishnamurthy (2020), would

suggest that targeting lower-rated firms should result in a stronger decrease in bor-
rowing costs, and so, should stimulate more real activity. This argument is further
strengthened by the CFO survey evidence of Campello, Graham, and Harvey (2010)
and Barry et al. (2022). As seen in Figure 2, lower-rated firms are less liquid and sol-
vent, suggesting that these firms could be more sensitive to credit conditions. Based
on this reasoning, I consider counterfactual policy targeting based on different rat-
ings criteria: BB-AAA and BB-A. The first policy expands eligibility to HY firms, while
the second policy does the same while also restricting eligibility to firms that are not
too highly rated. I focus on potential relaxations of the eligibility criteria to the BB-
rated category, since overlap in characteristics around the BB/BBB IG/HY threshold is
likely to be strongest.28

Figure 18 plots the expected difference in the average CATEs among targeted firms
from changing the set of target firms from BBB-AAA to BB-AAA for the model using
10 years of feature history and 1% tolerance for missing observations. Table A18 in
the Appendix shows the estimated effects across different models. Although a pos-
itive effect is detected for 2020, this is not robust to other model specifications. In
addition, positive effects are not estimated for other years. Figure A3 and Table A22
shows the corresponding results when proxying investment by the annual change in
gross property, plant, and equipment. Those results provide stronger evidence that
counterfactual targeting may have improved average outcomes among treated firms

28See Section 6.3.2 for additional discussion.
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Figure 18. Slight Improvement in Investment Outcome from BB-AAA Targeting

The figure plots the expected difference in the average CATEs among targeted firms in annual investment
versus 2019, as a percent of 2019Q4 assets, from expanding the targeted firms from BBB-AAA to BB-AAA
for the model using 10 years of feature history and 1% tolerance for missing observations. Table A18 in
the Appendix shows the estimated effects across different models. While a positive effect is detected for
2020, this is not robust to other model specifications. Additionally, positive effects are not estimated for
other years. Figure A3 and Table A22 shows the corresponding results when proxying investment by the
annual change in gross property, plant, and equipment. Those results provide stronger evidence that
counterfactual targeting may have improved average outcomes among treated firms in 2020, although
significant results are not picked up across all model specifications.

in 2020, although significant results are not picked up across all model specifications.
Similarly, Figure 19 plots the expected difference in the average CATEs among

targeted firms from changing the set of target firms from BBB-AAA to BB-A for the
model using 10 years of feature history and 1% tolerance for missing observations.
As seen, there is no improvement in investment. Table A19 in the Appendix shows
that the finding of no improvement in outcomes is generally robust across different
models. Figure A4 and Table A23 shows the corresponding results when proxying in-
vestment by the annual change in gross property, plant, and equipment. In contrast
to here, those results provide some evidence that counterfactual targeting may have
improved average outcomes among treated firms in 2020, although significant results
are not picked up across all model specifications.
Overall, the results in this section provide weak to inconclusive evidence that ex-
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Figure 19. No Improvement in Investment Outcome from BB-A Targeting

The figure plots the expected difference in the average CATEs among targeted firms in annual investment
versus 2019, as a percent of 2019Q4 assets, from changing the set of targeted firms from BBB-AAA to BB-A
for the model using 10 years of feature history and 1% tolerance for missing observations. As seen, there
is no improvement in investment. Table A19 in the Appendix shows that the finding of no improvement in
outcomes is generally robust across different models. Figure A4 and Table A23 shows the corresponding
results when proxying investment by the annual change in gross property, plant, and equipment. In
contrast to here, those results provide some evidence that counterfactual targeting may have improved
average outcomes among treated firms in 2020, although significant results are not picked up across all
model specifications.

panding the eligibility criteria of firms to include BB-rated firms would have led to
an improvement in the average investment outcomes among targeted firms in 2020.
The results are not entirely robust across different proxies for investment or model
specifications. However, there is no evidence to suggest that outcomes would have
been improved for other years.

44



8. Conclusion

I present a novel two-step semi-parametric difference-in-differences estimator for
computing dynamic (heterogeneous) treatment effects that is comparable to an event
study design with two-way fixed effects. The structural equation for potential out-
comes is the linear combination of a non-parametric intercept term and the inter-
action of a treatment indicator and a non-parametric slope term. The slope term
captures individual level heterogeneity, that is, conditional average treatment ef-
fects. Another ingredient for the estimator is an estimation of propensity scores,
the probability of a firm being classified as eligible for the CCFs, which is also mod-
eled as a non-parametric function of a high-dimensional set of characteristics. The
non-parametric terms are estimated using deep neural networks. Given that the as-
sumptions of unconfoundedness and the overlap condition are satisfied, this allows
for the identification of average treatment effects that account for heterogeneity
and counterfactual treatment effects from alternative policy targeting. Given the
difference-in-differences setup, the assumption of unconfoundedness can be relaxed
to weaker assumptions of (conditional) no anticipation and parallel trends, thus iden-
tifying the average treatment effect on the treated, instead. Given a general lack of
pre-trends in the event study regressions, conditional parallel trends is a justifiable
assumption, and estimates of the ATE and ATET from the two-step estimator are not
statistically different from zero.
The estimator is applied to study the financial and real effects of the Federal Re-

serve’s Corporate Credit Facilities launched in 2020 amid the COVID-19 pandemic,
as well as the effects of counterfactual eligibility criteria. Dynamic (heterogeneous)
treatment effects from the novel estimator are comparable to static (homogeneous)
treatment effects from a difference-in-differences panel regression and dynamic (ho-
mogeneous) treatment effects from an event study design with two-way fixed effects.
The results show that while all firms increased leverage and cash holdings as a pro-
portion of 2019 year-end assets, firms eligible for the CCFs increased leverage and
cash to a relatively lower extent than ineligible firms. Moreover, eligible firms do not
show an increased investment response, which suggests that the CCFs may not have
met its objective for producing real effects. This is robust to alternative proxies for
investment. In contrast, eligible firms did increase payouts to shareholders. Counter-
factual policy targeting loosening the CCFs eligibility criteria to target weaker credits
with possibly more binding financially constraints produces weak to inconclusive
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evidence of improved investment outcomes in 2020, while there is no evidence of
improved outcomes found for later periods.
Noting that both in the United States, as well as in Europe, CCFs failed to stimulate

investment (De Santis and Zaghini 2021; Grosse-Rueschkamp, Steffen, and Streitz
2019; Todorov 2020), Momin (2025) explores changes to the design of the CCFs to
encourage firm investment.
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Appendix

8.1. Event Study Regressions with Two-Way Fixed Effects

Table A1. Dynamic (Homogeneous) Treatment Effects

Dependent Variables: Cash (% 2019Q4 Assets) Total Debt (% 2019Q4 Assets) Dividends and Buybacks (% 2019Q4 Assets) Capital Expenditures and R&D (% 2019Q4 Assets)
Model: (1) (2) (3) (4)

Variables
2011 1.605∗∗ 5.950∗∗ -0.8059∗∗∗ -0.2164

(0.6316) (2.460) (0.2578) (0.2804)
2012 2.202∗∗∗ 4.198 -0.3333 -0.5236

(0.5401) (2.385) (0.3084) (0.4549)
2013 1.577∗∗ 5.409∗∗ -0.5584 -0.3305

(0.6211) (2.446) (0.3708) (0.3674)
2014 2.043∗∗∗ 3.310 -0.3442 -0.5331

(0.3430) (2.249) (0.3585) (0.3729)
2015 -0.8817 2.094 -0.4685 -0.5136

(1.330) (2.297) (0.3482) (0.4647)
2016 2.130∗∗∗ 2.960∗ -0.0752 -0.3801

(0.0944) (1.514) (0.3333) (0.2178)
2017 0.4773 4.476∗∗∗ -1.408∗ -0.1844∗∗

(0.7562) (0.9942) (0.7130) (0.0817)
2018 -0.1416 2.766∗∗ 0.1208 -0.1778∗

(0.1550) (1.145) (0.3248) (0.0927)
2020 -3.822∗∗∗ -1.662∗∗ 0.5398 -0.4923

(0.7861) (0.6474) (0.3370) (0.5767)
2021 -9.520∗∗∗ -5.954∗∗ 0.6531∗ -1.877∗∗

(2.418) (2.304) (0.3596) (0.8043)
2022 -6.923∗∗∗ -9.084∗∗∗ 0.9944∗∗ -0.9863∗∗

(2.265) (2.591) (0.3708) (0.4143)
2023 -4.005∗∗∗ -8.471∗∗∗ 0.8602∗∗ -0.6217∗

(1.091) (1.954) (0.3895) (0.2904)

Fixed-effects
Issuer Yes Yes Yes Yes
year Yes Yes Yes Yes

Fit statistics
Observations 9,912 9,502 9,641 9,798
R2 0.44205 0.56682 0.17201 0.39251
Within R2 0.00827 0.00736 0.00212 0.00116

Clustered (Issuer & Date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the coefficients related to the event study regressions presented in Section 5 corre-
sponding to Figures 4, 5, 6, and 7. Negative, sizeable effects are found for cash and total debt over the
treatment period. Positive effects are found for payouts, which are statistically significant for 2021, 2022,
and 2023. Similarly, negative effects are found for investment, which are statistically significant for 2021,
2022, and 2023.
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8.2. Features

Variable Description
accrual Accruals/Average Assets
adv_sale Advertising Expenses/Sales
aftret_eq After-tax Return on Average Common Equity

aftret_equity After-tax Return on Total Stockholders Equity
aftret_invcapx After-tax Return on Invested Capital

at_turn Asset Turnover
capital_ratio Capitalization Ratio

cash_debt Cash Flow/Total Debt
cash_lt Cash Balance/Total Liabilities

cfm Cash Flow Margin
de_ratio Total Debt/Equity

debt_assets Total Debt (ltq)/Total Assets
debt_at Total Debt (dlcq+dlttq)/Total Assets

debt_capital Total Debt/Capital
debt_ebitda Total Debt/EBITDA
debt_invcap Long-term Debt/Invested Capital

equity_invcap Common Equity/Invested Capital
evm Enterprise Value Multiple
gpm Gross Profit Margin

gprof Gross Profit/Total Assets
lt_debt Long-term Debt/Total Liabilities
lt_ppent Total Liabilities/Total Tangible Assets

npm Net Profit Margin
opmad Operating Profit Margin After Depreciation
opmbd Operating Profit Margin Before Depreciation
pcf Price/Cash flow

pe_exi P/E (Diluted, Excl. EI)
pe_inc P/E (Diluted, Incl. EI)

pe_op_basic Price/Operating Earnings (Basic, Excl. EI)
pe_op_dil Price/Operating Earnings (Diluted, Excl. EI)

ps Price/Sales
ptpm Pre-tax Profit Margin

rd_sale Research and Development/Sales
roa Return on Assets
roce Return on Capital Employed

staff_sale Labor Expenses/Sales
totdebt_invcap Total Debt/Invested Capital

Table A2. Features with Less than One Percent Missing Observations

52



Variable Description
bm Book/Market

capei Shillers Cyclically Adjusted P/E Ratio
cash_ratio Cash Ratio
curr_debt Current Liabilities/Total Liabilities
curr_ratio Current Ratio
dltt_be Long-term Debt/Book Equity
int_debt Interest/Average Long-term Debt
intcov After-tax Interest Coverage

intcov_ratio Interest Coverage Ratio
ocf_lct Operating CF/Current Liabilities
pay_turn Payables Turnover

peg_1yrforward Forward P/E to 1-year Growth (PEG) ratio
pretret_earnat Pre-tax Return on Total Earning Assets
pretret_noa Pre-tax return on Net Operating Assets
profit_lct Profit Before Depreciation/Current Liabilities

ptb Price/Book
quick_ratio Quick Ratio (Acid Test)
rect_act Receivables/Current Assets
rect_turn Receivables Turnover

roe Return on Equity
sale_equity Sales/Stockholders Equity
sale_invcap Sales/Invested Capital
short_debt Short-Term Debt/Total Debt

Table A3. Additional Features with Less than Ten Percent Missing Observations
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8.3. Base Effect Estimator Derivation

Set H(x, θ(x)) = α(x). Then,∇θH =
[
1 0

]
.

Compute the inverse of Equation 6:

Λ(x)–1 =
1

p(x)(1 – p(x))

[
p(x) – p(x)

– p(x) 1

]

=

 1
1– p(x) – 1

1– p(x)
– 1
1– p(x)

1
p(x)(1– p(x))


This gives:

(∇θH)Λ(x)–1 =
[
1 0

] 1
1– p(x) – 1

1– p(x)
– 1
1– p(x)

1
p(x)(1– p(x))


=
[

1
1– p(x) – 1

1– p(x)

]
Plug these in.

ψ(∆ yhi , zi, xi, θ(xi)) = α(x) – (∇θH)Λ(x)
–1l θ

= α(x) – (∇θH)Λ(x)–1
(
–

[
1

z

]
(∆ yh – α(x) – β(x)z)

)

= α(x) +
[

1
1– p(x) – 1

1– p(x)

] [1
z

]
(∆ yh – α(x) – β(x)z)

= α(x) +
(

1
1 – p(x)

–
z

1 – p(x)

)
(∆ yh – α(x) – β(x)z)

= α(x) +
(1 – z)(∆ yh – α(x) – β(x)z)

1 – p(x)

= α(x) +
(1 – z)(∆ yh – α(x))

1 – p(x)

where the last line uses the fact that (1 – z)z = 0.
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8.4. ATE Estimator Derivation

Set H(x, θ(x)) = β(x). Then,∇θH =
[
0 1

]
. The inverse of Equation 6 is the same as in

Appendix 8.3.
This gives:

(∇θH)Λ(x)–1 =
[
0 1

] 1
1– p(x) – 1

1– p(x)
– 1
1– p(x)

1
p(x)(1– p(x))


=
[
– 1
1– p(x)

1
p(x)(1– p(x))

]
Plug these into Equation 5.

ψ(∆ yhi , zi, xi, θ(xi)) = β(x) – (∇θH)Λ(x)
–1l θ

= β(x) – (∇θH)Λ(x)–1
(
–

[
1

z

]
(∆ yh – α(x) – β(x)z)

)

= β(x) +
[
– 1
1– p(x)

1
p(x)(1– p(x))

] [1
z

]
(∆ yh – α(x) – β(x)z)

= β(x) +
(
–

1
1 – p(x)

+
z

p(x)(1 – p(x))

)
(∆ yh – α(x) – β(x)z)

= β(x) +
(z – p(x))(∆ yh – α(x) – β(x)z)

p(x)(1 – p(x))

Add and subtract p(x)z to the numerator of the second term.

ψ(∆ yhi , zi, xi, θ(xi)) = β(x) +
(z – p(x) + p(x)z – p(x)z)(∆ yh – α(x) – β(x)z)

p(x)(1 – p(x))

= β(x) +
[(1 – p(x))z – p(x)(1 – z)]∆ yh – α(x) – β(x)z)

p(x)(1 – p(x))

= β(x) +
(1 – p(x))z(∆ yh – α(x) – β(x)z)

p(x)(1 – p(x))
–
p(x)(1 – z)(∆ yh – α(x) – β(x)z)

p(x)(1 – p(x))

= β(x) +
z(∆ yh – α(x) – β(x)z)

p(x)
–
(1 – z)(∆ yh – α(x) – β(x)z)

1 – p(x)

= β(x) +
z(∆ yh – α(x) – β(x)z)

p(x)
–
(1 – z)(∆ yh – α(x))

1 – p(x)

where the last line uses the fact that (1 – z)z = 0.
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8.5. ATET Estimator Derivation

Let c = 1 – z. Set H(x, θ(x)) = (α(x) + β(x))z – α(x)c. Then,∇θH =
[
z – c z

]
. The inverse

of Equation 6 is the same as in Appendix 8.3.
This gives:

(∇θH)Λ(x)–1 =
[
z – c z

] 1
1– p(x) – 1

1– p(x)
– 1
1– p(x)

1
p(x)(1– p(x))


=
[

z–c
1– p(x) –

z
1– p(x) – z–c

1– p(x) +
z

p(x)(1– p(x))

]
=
[
– c
1– p(x) – (z–c) p(x)

p(x)(1– p(x)) +
z

p(x)(1– p(x))

]
=
[
– c
1– p(x)

c p(x)+(1– p(x))z
p(x)(1– p(x))

]
Plug these into Equation 5.

ψ(∆ yhi , zi, xi, θ(xi)) = (α(x) + β(x))z – α(x)c – (∇θH)Λ(x)
–1l θ

= (α(x) + β(x))z – α(x)c – (∇θH)Λ(x)–1
(
–

[
1

z

]
(∆ yh – α(x) – β(x)z)

)

= (α(x) + β(x))z – α(x)c +
[
– c
1– p(x)

c p(x)+(1– p(x))z
p(x)(1– p(x))

] [1
z

]
(∆ yh – α(x) – β(x)z)

= (α(x) + β(x))z – α(x)c +
(
–

p(x)
p(x)(1 – p(x))

+
z

p(x)(1 – p(x))

)
(∆ yh – α(x) – β(x)z)

= (α(x) + β(x))z – α(x)c +
(z – p(x))(∆ yh – α(x) – β(x)z)

p(x)(1 – p(x))

Add and subtract p(x)z to the numerator of the second term, as in Section 8.4.

ψ(∆ yhi , zi, xi, θ(xi)) = (α(x) + β(x))z – α(x)c +
z(∆ yh – α(x) – β(x)z)

p(x)
–
(1 – z)(∆ yh – α(x))

1 – p(x)
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8.6. Counterfactual Effect Estimator Derivation

SetH(x, θ(x)) = β(x)(z′ – z). Then,∇θH =
[
0 z′ – z

]
. The inverse of Equation 6 is the

same as in Appendix 8.3.
Plug these into Equation 5.

ψ(∆ yhi , zi, xi, θ(xi)) = β(x)(z
′ – z) – (∇θH)Λ(x)–1l θ

= β(x)(z′ – z) – (∇θH)Λ(x)–1
(
–

[
1

z

]
(∆ yh – α(x) – β(x)z)

)

= β(x)(z′ – z) + (z′ – z)
[
– 1
1– p(x)

1
p(x)(1– p(x))

] [1
z

]
(∆ yh – α(x) – β(x)z)

= (z′ – z)
[
β(x) +

(
–

1
1 – p(x)

+
z

p(x)(1 – p(x))

)
(∆ yh – α(x) – β(x)z)

]
= (z′ – z)

[
β(x) +

(z – p(x))(∆ yh – α(x) – β(x)z)
p(x)(1 – p(x))

]

The remainder of the derivation simplifying the bracketed terms follows Appendix
8.4. The final expression is given by:

ψ(∆ yhi , zi, xi, θ(xi)) = (z
′ – z)

[
β(x) +

z(∆ yh – α(x) – β(x)z)
p(x)

–
(1 – z)(∆ yh – α(x))

1 – p(x)

]
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8.7. Deep Net Architectures

Feature History (Years)
1 5 10

Number of Features 333 1342 3204
Hidden Layer Architecture [300, 150, 75, [1500, 750, 375, [2700, 1350, 675, 300,

35, 15] 150, 75, 35, 15] 150, 75, 35, 15]
Dropout Rate 20%

Table A4. Architecture for Deep Nets with 1% Tolerance for Missing Observations

Feature History (Years)
1 5 10

Number of Features 517 2502 5314
Hidden Layer Architecture [500, 300, 150, [3000, 1500, 750, 375, [5000, 2700, 1350, 675,

75, 35, 15] 150, 75, 35, 15] 300, 150, 75, 35, 15]
Dropout Rate 20%

Table A5. Architecture for Deep Nets with 10% Tolerance for Missing Observations
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8.8. Base Effects

Table A6. Cash Base Effect

Difference in Cash Holdings Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 10.15* 6.49*** 6.39*** 6.78*** 6.62*** 6.75***

(5.98) (1.61) (0.90) (0.98) (0.91) (0.97)
2021 9.81* 9.76*** 11.81*** 12.96*** 13.03*** 13.32***

(5.85) (3.29) (3.83) (4.19) (4.07) (4.26)
2022 9.33 6.92*** 7.83*** 8.38*** 8.62*** 8.56***

(6.02) (2.58) (2.86) (3.01) (2.95) (3.12)
2023 7.63* 5.40*** 5.16*** 5.09*** 4.94*** 4.90***

(4.19) (1.77) (1.46) (1.43) (1.43) (1.38)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the change in cash holdings, as a percent of 2019Q4 assets. Results
for all model specifications are reported here; the corresponding architectures are reported in Tables A4
and A5 in the Appendix. The finding of large, positive base effects are largely consistent across different
model specifications, as well as the DiD regressions reported in Table 3.
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Table A7. Debt Base Effect

Difference in Total Debt Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 6.04 5.68*** 3.66*** 3.53*** 3.97*** 4.13***

(4.70) (1.99) (0.92) (0.99) (1.01) (1.05)
2021 19.13** 14.21*** 11.53*** 11.20*** 12.48*** 12.53***

(8.03) (3.25) (2.00) (1.96) (2.25) (2.26)
2022 19.83 20.97*** 16.16*** 16.67*** 16.65*** 16.92***

(17.93) (4.89) (2.51) (3.02) (2.95) (3.02)
2023 27.45** 24.83*** 16.50*** 17.88*** 17.06*** 17.73***

(12.32) (5.15) (2.66) (2.84) (2.69) (2.76)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the change in debt, as a percent of 2019Q4 assets. Results for all
model specifications are reported here; the corresponding architectures are reported in Tables A4 and A5
in the Appendix. The finding of large, positive base effects are largely consistent across different model
specifications, as well as the DiD regressions reported in Table 3.
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Table A8. Payout Base Effect

Difference in Payout Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -0.21 -0.16** -0.18*** -0.16*** -0.18*** -0.18***

(0.18) (0.08) (0.04) (0.04) (0.04) (0.04)
2021 0.13 0.17 0.23 0.19 0.21 0.16

(0.42) (0.23) (0.20) (0.17) (0.18) (0.18)
2022 -0.07 0.18 0.22** 0.27** 0.25* 0.24*

(0.65) (0.17) (0.10) (0.13) (0.13) (0.13)
2023 0.12 0.27* 0.29** 0.33*** 0.30*** 0.29**

(0.31) (0.16) (0.11) (0.12) (0.11) (0.12)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the change in payouts with respect to 2019, scaled by 2019Q4 assets.
Results for all model specifications are reported here; the corresponding architectures are reported
in Tables A4 and A5 in the Appendix. Generally consistent results are found whereby the base effect is
initially negative in 2020, null in 2021, and then positive in 2022 and 2023. This is in contrast to the null
results picked up by the DiD regressions reported in Table 4.
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Table A9. Investment Base Effect

Difference in CAPEX and R&D Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -0.22 0.10 -0.01 -0.02 -0.02 -0.02

(0.54) (0.19) (0.07) (0.07) (0.07) (0.07)
2021 0.76 0.85*** 0.67*** 0.72*** 0.73*** 0.72***

(0.72) (0.25) (0.12) (0.12) (0.12) (0.12)
2022 1.04 1.07*** 0.92*** 1.02*** 1.01*** 1.02***

(0.85) (0.30) (0.14) (0.15) (0.14) (0.15)
2023 1.24 1.25*** 1.00*** 1.04*** 1.04*** 1.08***

(0.94) (0.33) (0.16) (0.16) (0.16) (0.16)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the difference in annual investment versus 2019, scaled by 2019Q4
assets. Results for allmodel specifications are reportedhere; the corresponding architectures are reported
in Tables A4 and A5 in the Appendix. Consistent with the positive coefficient found for the post period in
Table 4 for the DiD regressions, positive base effects are generally found. However, this is not robust to
an alternative proxy for investment. As seen in Table A20, proxying investment by the annual change in
gross property, plant, and equipment suggests a negative effect which reverts to null.
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8.9. Average Treatment Effects

Table A10. Cash ATE

Difference in Cash Holdings Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -17.63 -6.24* -3.30*** -3.27*** -3.00*** -3.37***

(14.22) (3.64) (1.02) (1.06) (1.01) (1.09)
2021 -19.78 -9.68** -9.56** -11.56*** -11.05*** -11.11**

(15.96) (4.07) (3.92) (4.07) (4.12) (4.48)
2022 -15.64 -7.22* -6.92** -7.64** -7.51** -7.61**

(13.81) (4.28) (2.87) (2.98) (2.95) (3.05)
2023 -15.36 -4.88 -3.93** -3.62** -3.52** -3.22**

(11.19) (3.92) (1.53) (1.48) (1.46) (1.44)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for the change in cash holdings, as a percent of 2019Q4
assets. This corresponds to the estimator reported in Equation 9. Results for all model specifications are
reported here; the corresponding architectures are reported in Tables A4 and A5 in the Appendix. The
results are robust across model specifications, showing large, negative treatment effects. These are also
consistent with the DiD regressions reported in Table 3.
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Table A11. Debt ATE

Difference in Total Debt Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -20.48 -2.76 -0.98 -0.91 -0.91 -0.86

(18.15) (4.69) (1.20) (1.12) (1.11) (1.13)
2021 -36.12* -15.45** -6.66*** -5.93*** -7.04*** -6.96***

(18.79) (7.85) (2.43) (2.21) (2.39) (2.40)
2022 -39.72 -19.50** -9.72*** -9.60*** -9.34*** -9.75***

(27.89) (9.50) (2.88) (3.00) (3.00) (3.11)
2023 -43.82 -16.12* -9.33*** -9.29*** -8.64*** -8.90***

(30.06) (8.50) (3.18) (2.91) (2.82) (2.94)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for change in total debt, as a percent of 2019Q4 assets. This
corresponds to the estimator reported in Equation 9. Results for all model specifications are reported
here; the corresponding architectures are reported in Tables A4 and A5 in the Appendix. The finding of
an initial null effect and subsequent large, negative effects are generally consistent across specifications.
Table 6 compares the treatment effect estimates across different models and suggests that the results are
broadly in line.
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Table A12. Payout ATE

Difference in Payout Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -0.62 -0.25 0.13** 0.11** 0.14** 0.14***

(0.75) (0.30) (0.07) (0.06) (0.06) (0.05)
2021 -2.28 -0.05 0.22 0.24 0.24 0.32

(1.98) (0.70) (0.26) (0.25) (0.25) (0.23)
2022 -1.16 1.14 0.96*** 0.78*** 0.83*** 0.86***

(4.61) (1.84) (0.34) (0.27) (0.27) (0.28)
2023 3.28 0.38 0.67** 0.46*** 0.50*** 0.53***

(4.57) (0.79) (0.26) (0.17) (0.16) (0.16)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for the different in annual payouts versus 2019, as a
percent of 2019Q4 assets. This corresponds to the estimator reported in Equation 9. Results for all model
specifications are reported here; the corresponding architectures are reported in Tables A4 and A5 in
the Appendix. The model results are consistent across models using 5 and 10 years of feature history,
showing an initial positive effect in 2020 followed by a null effect in 2021 before returning to positive
effects for 2022 and 2023. Table 7 compares the treatment effect estimates across different models. While
the treatment effects are comparable, the standard errors for the dynamic (heterogeneous) treatment
effects are smaller.
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Table A13. Investment ATE

Difference in CAPEX and R&D Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -0.60 -0.49 -0.03 -0.00 0.09 -0.00

(2.44) (0.62) (0.25) (0.16) (0.15) (0.13)
2021 -2.93 -0.82 0.11 -0.01 -0.27 -0.41***

(3.03) (0.75) (0.48) (0.42) (0.20) (0.14)
2022 -3.16 -0.65 -0.37 -0.48** -0.48** -0.58***

(3.47) (1.14) (0.23) (0.20) (0.19) (0.17)
2023 -3.04 -0.83 -0.25 -0.35 -0.31 -0.46**

(2.62) (0.84) (0.26) (0.23) (0.21) (0.20)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for the difference in annual investment versus 2019,
scaled by 2019Q4 assets. This corresponds to the estimator reported in Equation 9. Results for all model
specifications are reported here; the corresponding architectures are reported in Tables A4 and A5 in
the Appendix. Particularly for the models with longer covariate histories, null-to-negative treatment
effects are estimated. Table 8 compares the different treatment effects, showing that incorporating
high-dimensional controls and heterogeneity increases the point estimates for the dynamic effects.
Additionally,whenproxying investment using the annual change in gross plants, property, and equipment,
Table A21, null effects are generally estimated across different models and cumulation horizons.
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8.10. ATE and ATET Comparison

Table A14. Cash Treatment Effect Comparison

Dynamic (Heterogeneous) Treatment Effect Comparison
Cash (% 2019Q4 Assets)

Year Average Treatment Effect ATE on Treated Difference
(1) (2) (1)-(2)

2020 -3.00 -3.97 0.97
(1.01) (1.02) (1.44)

2021 -11.05 -10.91 -0.14
(4.12) (4.19) (5.88)

2022 -7.51 -6.78 -0.74
(2.95) (3.02) (4.22)

2023 -3.52 -3.38 -0.15
(1.46) (1.47) (2.07)

Standard-errors in parentheses

The table compares the dynamic (heterogeneous) ATE and ATET estimates for cash, as a percent of
2019Q4, for the model which uses 10 years of feature history and 1% tolerance for missing observations.
The architecture for the model is given by Tables A4 and A5 in the Appendix. Section 8.4 and 8.5 derives
the IF estimator for the ATE and ATET, respectively. The estimates are comparable with the difference
not being statistically significant.
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Table A15. Debt Treatment Effect Comparison

Dynamic (Heterogeneous) Treatment Effect Comparison
Total Debt (% 2019Q4 Assets)

Year Average Treatment Effect ATE on Treated Difference
(1) (2) (1)-(2)

2020 -0.91 -1.51 0.59
(1.11) (1.12) (1.57)

2021 -7.04 -7.86 0.81
(2.39) (2.36) (3.36)

2022 -9.34 -10.92 1.58
(3.00) (3.07) (4.29)

2023 -8.64 -10.02 1.39
(2.82) (2.90) (4.04)

Standard-errors in parentheses

The table compares the dynamic (heterogeneous) ATE and ATET estimates for debt, as a percent of
2019Q4, for the model which uses 10 years of feature history and 1% tolerance for missing observations.
The architecture for the model is given by Tables A4 and A5 in the Appendix. Section 8.4 and 8.5 derives
the IF estimator for the ATE and ATET, respectively. The estimates are comparable with the difference
not being statistically significant.
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Table A16. Payout Treatment Effect Comparison

Dynamic (Heterogeneous) Treatment Effect Comparison
Payout (% 2019Q4 Assets)

Year Average Treatment Effect ATE on Treated Difference
(1) (2) (1)-(2)

2020 0.14 0.11 0.03
(0.06) (0.05) (0.08)

2021 0.24 0.07 0.18
(0.25) (0.25) (0.35)

2022 0.83 0.44 0.39
(0.27) (0.27) (0.39)

2023 0.50 0.28 0.22
(0.16) (0.16) (0.23)

Standard-errors in parentheses

The table compares the dynamic (heterogeneous) ATE and ATET estimates for payout, as a percent of
2019Q4, for the model which uses 10 years of feature history and 1% tolerance for missing observations.
The architecture for the model is given by Tables A4 and A5 in the Appendix. Section 8.4 and 8.5 derives
the IF estimator for the ATE and ATET, respectively. The estimates are comparable with the difference
not being statistically significant.
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Table A17. Investment Treatment Effect Comparison

Dynamic (Heterogeneous) Treatment Effect Comparison
CAPEX and R&D (% 2019Q4 Assets)

Year Average Treatment Effect ATE on Treated Difference
(1) (2) (1)-(2)

2020 0.09 0.08 0.02
(0.15) (0.13) (0.20)

2021 -0.27 -0.28 0.01
(0.20) (0.21) (0.29)

2022 -0.48 -0.42 -0.06
(0.19) (0.20) (0.27)

2023 -0.31 -0.38 0.06
(0.21) (0.21) (0.30)

Standard-errors in parentheses

The table compares the dynamic (heterogeneous) ATE and ATET estimates for investment, as a percent
of 2019Q4, for the model which uses 10 years of feature history and 1% tolerance for missing observations.
The architecture for the model is given by Tables A4 and A5 in the Appendix. Section 8.4 and 8.5 derives
the IF estimator for the ATE and ATET, respectively. The estimates are comparable with the difference
not being statistically significant.
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8.11. Counterfactual Targeting

Table A18. BB-AAA Targeting

Difference in CAPEX and R&D Versus 2019 (% 2019Q4 Assets)
Uplift Accounting for Heterogeneity, BB-AAA Targeting

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 0.00 0.00 0.05 0.04 0.05* 0.05

(0.24) (0.08) (0.03) (0.03) (0.03) (0.04)
2021 0.05 -0.01 0.08 0.02 0.02 -0.07

(0.21) (0.12) (0.06) (0.05) (0.05) (0.06)
2022 -0.22 -0.14 0.02 -0.07 -0.03 -0.20**

(0.37) (0.19) (0.07) (0.07) (0.06) (0.08)
2023 0.10 -0.05 0.07 -0.10 -0.03 -0.28***

(0.42) (0.17) (0.09) (0.08) (0.08) (0.10)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the expected difference in the average CATE among targeted firms in annual investment
versus 2019, as a percent of 2019Q4 assets, from expanding the targeted firms from BBB-AAA to BB-AAA.
Results for all model specifications are reported here; the corresponding architectures are reported in
Tables A4 and A5 in the Appendix.While a positive effect is detected for 2020 for themodel with 10 years of
feature history and 1%missingness tolerance, this is not robust to othermodel specifications. Additionally,
positive effects are not estimated for other years. Figure A3 and Table A22 shows the corresponding results
when proxying investment by the annual change in gross property, plant, and equipment. Those results
provide stronger evidence that counterfactual targeting may have improved average outcomes among
treated firms in 2020, although significant results are not picked up across all model specifications.
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Table A19. BB-A Targeting

Difference in CAPEX and R&D Versus 2019 (% 2019Q4 Assets)
Uplift Accounting for Heterogeneity, BB-A Targeting

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -0.04 -0.02 0.03 0.01 0.01 0.00

(0.34) (0.08) (0.04) (0.04) (0.04) (0.06)
2021 -0.21 -0.11 0.06 0.01 0.00 -0.13

(0.37) (0.15) (0.07) (0.06) (0.06) (0.09)
2022 -0.22 -0.17 0.02 -0.09 -0.05 -0.31***

(0.51) (0.21) (0.09) (0.08) (0.07) (0.11)
2023 0.05 -0.09 0.01 -0.17* -0.09 -0.48***

(0.39) (0.19) (0.10) (0.10) (0.09) (0.14)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the expected difference in the average CATE among targeted firms in annual investment
versus 2019, as a percent of 2019Q4 assets, from expanding the targeted firms from BBB-AAA to BB-A.
Results for all model specifications are reported here; the corresponding architectures are reported
in Tables A4 and A5 in the Appendix. As seen, no improvement in outcomes are detected across any
specification.
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8.12. Alternative Investment Proxy: Change in Gross Property, Plant, and Equipment

Figure A1. Base Effect for PPE Investment Proxy Negative Before Reverting to Null

The figure plots the base effects for the difference in annual investment versus 2019, scaled by 2019Q4
assets. Investment here is proxied by the annual change in gross property, plant, and equipment, in
contrast to Figure 13 where investment is proxied by capital expenditures and R&D. The model above
uses 10 years of feature history and 1% tolerance for missing observations. Details on its architecture
is reported in Table A4 in the Appendix. Table A20 reports results across all model specifications. In
contrast to the null-to-positive effects found using the CAPEX and R&D proxy for investment, here there
are negative base effects are estimated for 2020 and 2021, which then become null for 2022 and 2023.
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Table A20. Base Effect for PPE Investment Proxy

Difference in Annual Change in Gross Plants, Property, and Equipment Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -1.01 -6.49*** -4.87*** -5.25*** -5.24*** -5.10***

(7.81) (1.72) (1.03) (0.97) (1.01) (1.06)
2021 -2.41 -2.23 -2.28*** -2.43*** -2.31*** -2.21**

(5.05) (1.99) (0.88) (0.84) (0.88) (0.91)
2022 -4.19 -2.26 -1.86* -2.16** -1.63 -1.28

(6.33) (1.85) (0.97) (0.90) (1.15) (1.13)
2023 2.66 -0.58 -0.32 -0.41 -0.14 -0.02

(4.48) (2.31) (1.10) (1.06) (1.26) (1.24)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the difference in annual investment versus 2019, scaled by 2019Q4
assets. Investment here is proxied by the annual change in gross property, plant, and equipment, in
contrast to Table A9 where investment is proxied by capital expenditures and R&D. Results for all model
specifications are reported here; the corresponding architectures are reported in Tables A4 and A5 in the
Appendix. The models produce relatively consistent results, with an initially negative base effect found
for 2020 and 2021, becomes null for 2022 and 2023. This is in contrast to the null-to-positive effects found
using the CAPEX and R&D proxy for investment.
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Figure A2. ATE for PPE Investment Proxy Null

Thefigure plots the average treatment effects for the difference in annual investment versus 2019, scaled by
2019Q4 assets. Investment here is proxied by the annual change in gross property, plant, and equipment,
in contrast to Figure 17 where investment is proxied by capital expenditures and R&D. This corresponds
to the estimator reported in Equation 9. Themodel above uses 10 years of feature history and 1% tolerance
for missing observations. Details on its architecture is reported in Table A4 in the Appendix. Table A21
reports results across all model specifications, showing that null effects are estimated in every instance.
In contrast, the proxy for investment using CAPEX and R&D indicates a negative treatment effect for
2022.
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Table A21. ATE for PPE Investment

Difference in Annual Change in Gross Plants, Property, and Equipment Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 38.02 9.63 -1.18 0.01 0.47 0.19

(34.56) (15.40) (3.08) (2.14) (1.59) (2.10)
2021 61.37 17.95 -0.01 0.03 -1.14 -0.87

(94.61) (17.78) (2.05) (1.91) (1.52) (1.59)
2022 52.72 6.29 0.91 0.99 -0.89 -1.71

(48.18) (9.77) (2.76) (2.05) (1.55) (1.47)
2023 20.16 12.82 1.61 0.66 -0.43 -0.85

(36.17) (8.38) (2.06) (1.48) (1.61) (1.60)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for the difference in annual investment versus 2019,
scaled by 2019Q4 assets. Investment here is proxied by the annual change in gross property, plant, and
equipment, in contrast to Table A13 where investment is proxied by capital expenditures and R&D. This
corresponds to the estimator reported in Equation 9. Results for all model specifications are reported
here; the corresponding architectures are reported in Tables A4 and A5 in the Appendix. Null effects
are generally estimated across different models and cumulation horizons. In contrast, the proxy for
investment using CAPEX and R&D indicates a negative treatment effect for 2022.
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Figure A3. Possible Improvement in Investment Outcome from BB-AAA Targeting

The figure plots the the expected difference in the average CATEs among targeted firms in annual
investment versus 2019, as a percent of 2019Q4 assets, from expanding the targeted firms from BBB-AAA
to BB-AAA for the model using 10 years of feature history and 1% tolerance for missing observations. The
results suggest an improvement in investment outcomes among treated firms for 2020. Table A23 shows
that this effect is found for the models using 10 years of feature history. However, this is not robust across
all specifications.
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Table A22. BB-AAA Targeting

Difference in Annual Change in Gross Plants, Property, and Equipment Versus 2019 (% 2019Q4 Assets)
Uplift Accounting for Heterogeneity, BB-AAA Targeting

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 0.34 1.30 0.59 0.85* 0.90** 2.04***

(2.55) (1.11) (0.51) (0.43) (0.41) (0.54)
2021 2.34 0.63 -0.35 0.20 0.30 0.72

(3.07) (1.15) (0.62) (0.54) (0.50) (0.68)
2022 1.90 1.23 0.65 0.66 0.52 1.09*

(2.29) (1.09) (0.55) (0.46) (0.45) (0.57)
2023 -1.70 0.62 0.00 0.17 0.11 0.19

(1.94) (1.21) (0.64) (0.58) (0.57) (0.69)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the expected difference in the average CATEs among targeted firms in annual investment
versus 2019, as a percent of 2019Q4 assets, from expanding the targeted firms from BBB-AAA to BB-AAA.
Results for all model specifications are reported here; the corresponding architectures are reported in
Tables A4 and A5 in the Appendix. The results suggest an improvement in investment outcomes among
treated firms for 2020, particularly for the models using 10 years of feature history. However, this is not
robust across all specifications.
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Figure A4. Slight Improvement in Investment Outcome from BB-A Targeting

The figure plots the expected difference in the average CATEs among targeted firms in annual investment
versus 2019, as a percent of 2019Q4 assets, from changing the set of targeted firms from BBB-AAA to BB-A
for the model using 10 years of feature history and 1% tolerance for missing observations. The results
suggest an improvement in investment outcomes among treated firms for 2020. Table A23 shows that
this effect is found for the models using 10 years of feature history. However, this is not robust across all
specifications.
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Table A23. BB-A Targeting

Difference in Annual Change in Gross Plants, Property, and Equipment Versus 2019 (% 2019Q4 Assets)
Uplift Accounting for Heterogeneity, BB-A Targeting

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -1.49 1.47 0.15 0.66 0.73* 2.50***

(2.13) (1.49) (0.60) (0.45) (0.42) (0.67)
2021 1.15 0.12 -0.16 0.20 0.17 0.88

(3.60) (1.41) (0.64) (0.53) (0.52) (0.83)
2022 2.37 0.66 0.58 0.62 0.45 1.17

(2.16) (0.96) (0.62) (0.46) (0.45) (0.71)
2023 -1.85 0.18 -0.28 0.06 0.07 0.17

(2.55) (1.64) (0.71) (0.61) (0.58) (0.81)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the expected difference in the average CATEs among targeted firms in annual investment
versus 2019, as a percent of 2019Q4 assets, from changing the set of targeted firms from BBB-AAA to BB-A.
Results for all model specifications are reported here; the corresponding architectures are reported in
Tables A4 and A5 in the Appendix. The results suggest an improvement in investment outcomes among
treated firms for 2020, particularly for the models using 10 years of feature history. However, this is not
robust across all specifications.
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