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ABSTRACT

This dissertation investigates the price effects, real effects, and design of the Federal Re-

serve’s Corporate Credit Facilities (CCFs), launched in 2020 to stabilize U.S. corporate

bond markets during the COVID-19 pandemic.

Chapter 1, based on work with Jessica S. Li, estimates impact of the CCFs on corpo-

rate bond spreads. The CCFs included both direct support via cash bond purchases and

indirect support via exchange-traded fund (ETF) purchases. We exploit bond-level rat-

ings heterogeneity across firms to identify treatment effects from direct bond support. The

March 23, 2020 announcement of the CCFs reduced spreads by 96 basis points (bps) for el-

igible issuers. To estimate the impact of the April 9 expansion, we leverage a quasi-natural

experiment involving “Fallen Angel” firms—those initially eligible, then briefly ineligible,

but reinstated during the expansion. Relative to a control group, we find a -126 bps treat-

ment effect. Using a causal machine learning approach detailed in Chapter 2, we estimate

that ineligible firms would have seen a -500 bps spread reduction had they received direct

bond support on March 23.

Chapter 2 develops a novel two-step semi-parametric difference-in-differences (DiD) es-

timator for dynamic and heterogeneous treatment effects, allowing for flexible policy coun-

terfactuals. Applying the method to firm-level outcomes, I analyze the real effects of the

CCFs on cash holdings, leverage, payouts, and investment. The estimator produces results

consistent with conventional panel and event study regressions but highlights important

heterogeneity. Firms generally increased cash and leverage, while payout and investment

initially declined. However, CCF-eligible firms began deleveraging by 2021 and accumu-

lated less cash compared to ineligible peers. Despite increased shareholder payouts, eligi-

ble firms did not raise investment levels, suggesting that the CCFs failed to achieve their

stated real economy goals. Counterfactual treatment effects suggest that broadening eligi-

bility for direct bond support might have increased leverage and payouts, but evidence on
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investment gains is weak or inconclusive.

Chapter 3 provides a theoretical framework to explain these findings. I construct a dy-

namic capital structure model with investment in which firms cannot commit to a debt

issuance policy. In the model, unsecured debt interventions accelerate borrowing but un-

dermine the benefit of lower bond yields due to increased leverage. The proceeds are pri-

marily distributed to shareholders rather than invested. In contrast, secured debt interven-

tions support better investment outcomes because the collateral constraint on secured debt

issuance induces commitment. Even for financially unconstrained firms, secured debt inter-

ventions yield more favorable dynamics, aligning firm incentives with the policy’s intended

real effects.

Together, these chapters demonstrate that while the CCFs were highly effective in re-

ducing borrowing costs, their real effects were muted or misdirected, in part due to firms’

inability to commit to future financial policies. The findings underscore the importance

of policy design—particularly the role of collateral and commitment—in determining the

effectiveness of credit market interventions.
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CHAPTER 1

THE CAUSAL EFFECT OF THE FED’S CORPORATE CREDIT

FACILITIES ON ELIGIBLE ISSUER BONDS

1.1 Introduction

In response to market and economic stress caused by the COVID-19 pandemic, the Federal

Reserve expanded its monetary policy toolkit to include corporate bond purchases for the

first time in its history. In this paper, we estimate the treatment effect of direct cash bond

support from the Fed’s Corporate Credit Facilities (CCFs). Complicating the estimation of

these treatment effects is that the Fed staggered the announcements of the CCFs and also

provided indirect support to issuers via potential exchange-traded fund (ETF) purchases.

While eligibility for direct cash bond support was determined by issuer credit ratings, we

note that existing studies identify eligibility by using issue-level credit ratings.1

To address this, we introduce a novel identification strategy that exploits the capital

structure heterogeneity of corporate bonds, as illustrated in Figure 1.1. Our strategy iden-

tifies the treatment effect of direct cash bond support by comparing similarly rated bonds

with similar maturity but issued by differentially eligible firms in panel DiD regressions

with fixed effects. This approach controls for the indirect support directed to bonds via

potential ETF purchases. In contrast, papers using issue ratings to determine eligibility

for direct cash bond support effectively compare the investment-grade (IG) bonds of both

eligible and ineligible issuers with the high-yield (HY) bonds of mostly ineligible issuers,

1. These include papers studying prices/spread reactions, as well as liquidity impacts: Boyarchenko,

Kovner, and Shachar [2020], D’Amico, Kurakula, and Lee [2020], Haddad, Moreira, and Muir [2021], Kar-

gar et al. [2021], O’Hara and Zhou [2021], and Nozawa and Qiu [2021]. Notable exceptions are Flanagan

and Purnanandam [2020] and Gilchrist et al. [2021], both of which limit their analyses to investment-grade

(IG) issuers.
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Figure 1.1: Distribution of Corporate Bond Ratings by Fed CCF Eligibility

The figure shows the relative count of issues by eligible and ineligible issuers over their numerical issue ratings
(see Table 1.2 for the mapping between the letter and numerical ratings). We numerate issue ratings for
corporate bonds which traded on March 23, 2020 and April 9, 2020. See Section 1.3 for additional elaboration
on the eligibility criteria.

generating potential measurement error.

Using our identification strategy, we find that the initial announcement on March 23,

2020 of the Fed CCFs, with a potential size of up to $300 bn, led to 96.0 bps of additional

tightening for eligible issuers’ spreads versus those of ineligible issuers. When the sample

of bonds is restricted to those with less than five years maturity, which further aligns with

the CCFs’ eligibility criteria for direct support, the effect increases in magnitude to -135.5

bps.

These results are robust to using the change in log bond prices, instead of spreads, as

the outcome variable and to proxying eligibility with the constituents of the SMCCF Broad

2



Market Index, which was announced prior to the start of direct cash bond purchases in

mid-June. Interestingly, the SMCCF Broad Market Index proxy for eligibility suggests a

far smaller magnitude for the treatment effect (-47.0 bps and -68.6 bps for all bonds and

for bonds with less than five years maturity, respectively). This suggests that broader pop-

ulation of eligible bonds was more sensitive to the CCFs than those targeted by the Fed

for purchase, which is consistent with the findings of Flanagan and Purnanandam [2020].

In the follow-up announcement on April 9, 2020, the Fed both increased the potential

size of the CCFs to $750 bn and also announced the purchases of HY ETFs. Despite em-

phasizing that HY ETF purchases would be much more limited in scope,2 ineligible is-

suers’ spreads reacted strongly to the announcement. On balance, while all bond spreads

tightened on April 9, 2020, ineligible issuers’ bonds were more sensitive to the inclusion

of HY ETFs than eligible issuers’ bonds were to the expansion of the facilities. The coef-

ficient estimates are 65.1 bps and 87.0 bps for all bonds and for bonds with less than five

years maturity, respectively, suggesting that eligible issuers’ spreads widened relative to

those of ineligible issuers.

We find that the measurement error induced by using issue ratings, rather than issuer

ratings, to determine eligibility for direct cash bond support further underestimates the

impact of the facility expansion on eligible issuers’ spreads. The coefficient estimates be-

come 91.0 bps and 107.0 bps for all bonds and for bonds with less than five years matu-

rity, respectively, suggesting an even greater widening of eligible issuers’ spreads relative

to those of ineligible issuers. Hence, using issue ratings to proxy eligibility for direct cash

bond support leads to a bias of around 20 bps to 26 bps, which is driven by classifying the

IG bonds of HY issuers as eligible when they were not, thus underestimating the effect of

the April 9, 2020 on eligible issuers’ spreads.

To better isolate the effects of the April 9, 2020 facility announcement on direct cash

2. Realized purchases of HY ETFs totaled less than 8% of all CCF purchases.

3



bond support, we exploit a quasi-natural experiment around the eligibility of Fallen An-

gel issuers. Fallen Angel issuers were initially eligible for direct cash bond support but

fell out of eligibility after experiencing downgrades between March 23, 2020 and April 9,

2020. The April 9, 2020 facility announcement restored the eligibility of these issuers. We

compare the relative movement of the spreads of Fallen Angel issuers to a control group of

similarly rated but never eligible issuers: those rated as IG by one rating agency but who

were not eligible for the CCFs due to being rated HY by at least one other rating agency.

We show that the distribution of their CDS spreads and the ratings of their bonds are sim-

ilar, suggesting that they have similar risk characteristics and were similarly exposed to

indirect support from ETF purchases.

Using the panel difference-in-differences (DiD) regressions with fixed effects and appro-

priately differencing coefficients, we compare the relative changes in spreads across these

two groups and estimate treatment effects of -125.6 bps and -85.6 bps for all bonds and for

bonds with less than five years maturity, respectively. The finding that the magnitude of

the estimated treatment is smaller for bonds with less than five years maturity is surpris-

ing and contrary to previous estimates. It is driven by a greater tightening of the control

groups’ spreads versus those of Fallen Angel issuers within the subsample of bonds with

less than five years maturity.

Nonetheless, as Fallen Angel issuers lost eligibility for direct cash bond support heading

into April 9, 2020, the treatment effect of -125.6 bps roughly reflects the impact of the im-

plied support when facilities were sized up to $750 bn. While greater than the -96.0 bps

effect estimated from the initial announcement of the facilities on March 23, 2020 at a size

of up to $300 bn, it is not proportionally higher in magnitude as the increase in the size

of the facilities would suggest. This is consistent with the findings of Haddad, Moreira,

and Muir [2025] that most of the effects of the CCFs were realized at their announcement,

when markets priced in reduced tail-risk, reflecting a ‘Fed put.’
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To estimate the counterfactual treatment effect of direct cash bond support for ineligible

issuers,3 we use the two-step semi-parametric DiD estimator introduced in Momin [2025b],

which is based on Farrell, Liang, and Misra [2021a] and Farrell, Liang, and Misra [2021b].

The estimator is derived to adjust for any bias arising from the use of machine learning

(ML) in estimating parameters which are inputs into the estimator. We refer to this as the

causal ML approach. Identification is facilitated by the Fed’s use of credit ratings to de-

termine eligibility for direct cash bond support, since credit ratings often lag fundamentals

and market-based measures of risk, such as credit default swap (CDS) spreads [Altman

and Rijken, 2004, Altman, 2020, Lee, Naranjo, and Velioglu, 2018, Lee, Naranjo, and Sir-

mans, 2021]. Momin [2025b] shows that eligible and ineligible issuers have significant over-

laps in their distributions of CDS spreads and firm characteristics. The empirical strategy

uses a high-dimensional set of features that allows for the ‘prediction’ of ineligible issuers’

counterfactual response to receiving the treatment (direct cash bond support), as well as

allowing heterogeneity to be assessed. Under the assumptions of overlap and unconfound-

edness, i.e. treatment assignment and potential outcomes are independent given the high-

dimensional set of features, the average treatment effect (ATE), average treatment effect

on the treated (ATET),4 group average treatment effects (GATEs), and counterfactual

treatment effects are identified.

We focus on the response in bond spreads on March 23, 2020, since the impact of the

Fed announcing direct cash bond support can be measured most accurately on this date.

However, the causal ML approach also incorporates in any additional impact of potential

ETF support, since the two are not separately identified. As such, the estimates of ATET

obtained from comparing the difference in the change in spreads between eligible and in-

3. As well as any additional indirect support via promised ETF purchases on March 23, 2020.

4. ATET remains identified even if the assumption of unconfoundedness is relaxed to conditional no

anticipation and parallel trends.
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eligible issuers for the causal ML approach is analogous to the results from the panel DiD

regressions without fixed effects. The range of ATET estimates from the causal ML ap-

proach is comparable to the estimate from the panel DiD regression without fixed effects.

To study heterogeneity, we compute the GATEs across the IG rating buckets (i.e. BBB,

A, AA, AAA). This corresponds to the average treatment effect among eligible issuers

with the same rating. We find a generally monotonic pattern where the magnitude of the

treatment effect increases as the credit rating worsens, in line with a simple theoretical

framework on the sensitivity of bond spreads to intervention, as a function of default risk

[Brunnermeier and Krishnamurthy, 2020]. The exception to this pattern is the higher

GATE for AAA-rated issuers versus AA-rated issuers. This may reflect the well-documented

sell-off pressures faced by the safest securities at the onset of the pandemic, due to in-

vestors’ heightened liquidity demand [Haddad, Moreira, and Muir, 2021, He, Nagel, and

Song, 2022, Ma, Xiao, and Zeng, 2022].

The counterfactual treatment effect for ineligible issuers had they received direct cash

bond support (as well as any additional indirect support from ETF purchases) is given

by the GATE estimate for B- and BB-rated issuers. This is estimated to be around -500

bps and is statistically significant despite extremely large standard errors. Notably, the

causal ML approach estimates such a large effect despite ineligible issuers’ spreads gen-

erally widening on March 23, 2020. For comparison, the spreads of Fallen Angel issuers

narrowed by around 300 bps on April 9, 2020. To the extent that ineligible issuers are of

worse credit quality than Fallen Angel issuers, and if the estimate reflects additional indi-

rect support from ETF purchases, the magnitude of the counterfactual treatment effect for

ineligible issuers appears plausible.
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1.1.1 Contribution to Literature

This paper primarily contributes to the large literature studying the effects of the Fed

CCFs on corporate bond pricing, spreads, and liquidity, that were written contemporane-

ously with ours. First, it points out a potential identification concern that affects most of

these papers, which determine eligibility by issue rather than issuer ratings [Boyarchenko,

Kovner, and Shachar, 2020, D’Amico, Kurakula, and Lee, 2020, Haddad, Moreira, and

Muir, 2021, Kargar et al., 2021, O’Hara and Zhou, 2021, Nozawa and Qiu, 2021].5 The

novel identification strategy used here exploits the heterogeneity of the corporate bond

capital structure, and the fact that differentially rated issuers have similarly rated bonds

to measure the differential impact of the CCFs for bonds with similar ratings and matu-

rity. Second, armed with this, we study the potential measurement bias that may have

arisen from using issue rather than issuer ratings to determine eligibility. We find that this

measurement bias arises particularly when determining the effect of the April 9, 2020 an-

nouncement on eligible issuer spreads, relative to ineligible issuer spreads, and understates

its impact by 20 to 26 bps. It is driven by classifying the IG bonds of HY issuers as eligi-

ble for direct cash bond support.

Third, noting that the expansion of the CCFs on April 9, 2020 also brought into in-

clusion HY ETFs for purchases, we observe the difficulty of measuring the effect of the

April 9, 2020 facility expansion on eligible issuers. To better identify this effect, we exploit

quasi-experimental variation between the March 23, 2020 and April 9, 2020 announcement

dates. There were several firms that were initially eligible for the CCFs but were subse-

quently downgraded out of eligibility before having their eligibility reinstated (the so-called

Fallen Angels). We track the relative movements of the spreads of this group of firms with

a control group of firms that just missed the ratings cutoff for eligibility to determine the

5. Notable exceptions are Flanagan and Purnanandam [2020] and Gilchrist et al. [2021], both of which

limit their analyses to IG issuers.

7



treatment effect of the April 9, 2020 announcement. While the treatment effect estimate

for expanded facility size is larger than the estimate from the initial announcement, it is

not proportionally as large as the expansion in the facility size. This corroborates the find-

ing in Haddad, Moreira, and Muir [2025] that markets priced in most of the conditional

policy support promised by the Fed at the initial announcement.

Fourth, we utilize another novel identification strategy to estimate counterfactual treat-

ment effects: the two-step semi-parametric DiD estimator of Momin [2025b], which is based

on Farrell, Liang, and Misra [2021a] and Farrell, Liang, and Misra [2021b]. The causal ML

approach allows for correct inference while using high-dimensional controls and ML-driven

model selection. Other papers using double-debiased ML (DML) methods6 in the empiri-

cal asset pricing literature include Borri et al. [2024], Feng, Giglio, and Xiu [2020], Gomez-

Gonzalez, Uribe, and Valencia [2024], Hansen and Siggaard [2024], and Maasoumi et al.

[2024]. To the best of our knowledge, this paper is the first to use DML and related meth-

ods to assess counterfactual treatment effects in the finance literature.

The remainder of the paper is organized as follows. Section 1.2 discusses the related lit-

erature. Section 1.3 provides a general description of the data and sample construction,

alongside relevant institutional details. Section 1.4 discuses the treatment effects for eligi-

ble issuers using panel DiD regressions and from exploiting the quasi-natural experiment

around the eligibility of Fallen Angel issuers. Section 1.5 presents the counterfactual treat-

ment effect estimates for ineligible issuers using the causal ML approach. Section 1.6 con-

cludes.

6. See the canonical references of Belloni, Chernozhukov, and Hansen [2014] and Chernozhukov et al.

[2018].
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1.2 Related Literature

There are several papers that study the effect of the CCFs on prices/spreads, as well as

liquidity. Haddad, Moreira, and Muir [2021] argue that the safest securities, including IG

corporate bonds, experienced relatively greater selling pressure at the start of the COVID-

19 financial crisis due to investor liquidity demands. O’Hara and Zhou [2021] and Kargar

et al. [2021] corroborate this narrative by showing that liquidity deteriorated as corporate

bond dealers shed inventory. O’Hara and Zhou [2021] further show that customer trades

migrated to centralized client-to-client exchanges, though at higher costs. Kargar et al.

[2021] show that costs of principal trades rose markedly, leading to an increase of lower-

quality, slower agency trades. These papers all find that the Fed’s interventions worked to

drastically improve liquidity in corporate bond markets. However, Nozawa and Qiu [2021]

use a variance decomposition approach to identify a greater reduction in bond spreads

due to the reduction of default risk, rather than improvements in liquidity, due to the an-

nouncement of the Fed CCFs.

Among all papers, there is tentative consensus that the March 23, 2020 event was more

beneficial for eligible issuer bonds, but Boyarchenko, Kovner, and Shachar [2020] and Had-

dad, Moreira, and Muir [2021] present some evidence that April 9, 2020 may have been

more beneficial for eligible issuer bonds. In contrast, this paper, D’Amico, Kurakula, and

Lee [2020] and Nozawa and Qiu [2021] find that April 9, 2020 may have benefited ineligi-

ble issuer bonds to a greater extent. Using option prices to infer conditional policy sup-

port, Haddad, Moreira, and Muir [2025] finds that the initial March 23 announcement of

the facilities had the largest effect in reducing tail risk for IG bonds, while the subsequent

announcement on April 9 expanding the size of the facilities had more modest effects. Ad-

ditionally, D’Amico, Kurakula, and Lee [2020] and Boyarchenko, Kovner, and Shachar

[2020] find that issuance, particularly for IG issuers, quickly picked up pace following the

introduction of the CCFs.
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Similar to our focus on Fallen Angel issuers to estimate a counterfactual treatment,

Nozawa and Qiu [2021] perform a similar, albeit descriptive, exercise and compare the

change in spreads averaged across bonds for both the treated Fallen Angels and a matched

control group. They compute an average two-day change in spreads of 340 bps for Fallen

Angels versus 120 bps for the control group around the facility announcement dates. The

implied treatment effect of 220 bps far exceeds our estimate of 126 bps.7

Unlike this paper and those above, Flanagan and Purnanandam [2020] and Gilchrist

et al. [2021] restrict their samples to only IG issuers. Consequently, they do not bias their

results by identifying eligible issuers by the use of issuer rather than issue ratings. Flana-

gan and Purnanandam [2020] find that the bonds that the Fed ultimately ended up pur-

chasing were those that had become more ‘informationally sensitive,’ in the sense that

these bonds were used as collateral in repo transactions and were sold by mutual funds

meeting redemption demand. In contrast, the extent of bond price depreciation and the

issuer’s payroll size seems to have matter less for SMCCF Index inclusion. Among eligible

issuers, Gilchrist et al. [2021] find that issues below the five year maturity cutoff experi-

enced a greater decrease in spreads than those issues above the cutoff. The authors find

that the impact of the facilities on spreads seem to come from a reduction in credit risk

premia, though this effect disappears when controlling for a correction in the credit term

structure induced by the facility announcements. Consistent with our results and those

of other papers, they find that the facility announcements induced a greater reduction in

spreads than actual purchases of bonds.

This paper also relates to the literature on the ECB’s corporate bond purchase facil-

ity, the Corporate Sector Purchase Programme (CSPP), which predates the Fed CCFs. A

7. Nozawa and Qiu [2021] do not report standard errors, so it is unclear if the difference they find is

statistically significant. In contrast, our results, reported in Table 1.6 are statistically significant at the 1%

level with standard errors double-clustered by date and issuer.
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key difference between the Fed CCFs and the CSPP relates to eligibility criteria, as the

CCFs’ ratings eligibility is determined at the issuer level whereas the CSPP is determined

at the issue level. Several papers study the impact of the CSPP on European corporate

bonds. Using pooled regression, Zaghini [2019] focus on the primary market issuances and

find that the CSPP improved yield spreads for both eligible and ineligible bonds, uphold-

ing the re-balance channel. Abidi and Miquel-Flores [2018] exploit a slight difference be-

tween the CSPP and market IG/HY cutoff and propose a regression discontinuity design.

They document both an improvement in bond spreads and an increase in primary mar-

ket issuance and find that the announcement impact was most noticeable in the sample of

CSPP-eligible bonds that were perceived as HY by the market, highlighting both the port-

folio re-balance channel and the liquidity channel. Similarly, Todorov [2020] finds a sizable

impact on the spreads of eligible bonds from the introduction of the CSPP.

1.3 Data and Institutional Background

1.3.1 Term Sheets

Table 1.1: Comparison of Fed CCF Term Sheets on March 23, 2020, and April 9, 2020

March 23, 2020 April 9, 2020

Size of Facilities Up to $300 bn Up to $750 bn
IG Issuers (Direct Cash Bond Support) Introduced Expanded
HY Issuers (Direct Cash Bond Support) Not Included Only Fallen Angels Included
IG ETFs (Indirect Support) Introduced Expanded
HY ETFs (Indirect Support) Not Included Introduced

The table shows the high-level details of the Federal Reserve’s announcements of the Primary Market Corpo-
rate Credit Facility (PMCCF) and the Secondary Market Corporate Credit Facility (SMCCF). The facilities
were initially announced on March 23, 2020 and subsequently expanded on April 9, 2020. At inception, the
CCFs provided direct cash bond support for IG issuers through potential primary and secondary market
purchases. It also included support for IG ETFs. The facilities were expanded in April 9, 2020. In addition,
Fallen Angel (FA) issuers, those who were eligible as of March 22, 2020 but were subsequently downgraded
out of eligibility, had their eligibility reinstated. The Fed also amended the term sheet of the SMCCF to
include purchases HY ETFs but stressed that the “preponderance” of ETF purchases would be IG ETFs.
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On March 23, 2020, with equity capital provided by the U.S. Treasury, the Fed established

two emergency lending facilities: the Primary Market Corporate Credit Facility (PMCCF)

and the Secondary Market Corporate Credit Facility (SMCCF) to purchase primary mar-

ket debt of up to four years in maturity and secondary market bonds of up to five years

in maturity for non-financial IG issuers with significant U.S. operations. Additionally, the

facilities gave the Fed the ability to purchase corporate bond ETFs with broad exposure

to IG issuers. On April 9, 2020, the Fed expanded the size of the PMCCF and the SM-

CCF, as well as its scope to include HY corporate bond ETFs and extended eligibility to

issuers who were rated as IG as of March 22, 2020, as long as on the day of purchase they

are rated BB- or above (i.e. Fallen Angels). These announcements are summarized in Ta-

ble 1.1.

1.3.2 Sample Construction

Corporate bond transaction data are obtained from the Enhanced TRACE database. The

enhanced version of TRACE is made available on Wharton Research Data Services (WRDS)

and updated quarterly. The Enhanced TRACE contains trade-level information on U.S.

corporate bond transactions, including bond CUSIP, trade-level price, uncapped trade vol-

ume, execution time-stamp, buy/sell indicator, counterparty code, and other related met-

rics. We follow the literature and apply a standard filtering procedure (e.g., Dick-Nielsen

[2014]) to clean the Enhanced TRACE. We remove all primary transactions from the data.

We obtain bond characteristics from Mergent FISD Bond Issues dataset via WRDS.

These characteristics include issuer CUSIP, coupon, coupon type, maturity, offering date,

maturity date, total par amount outstanding, industry, currency, country domicile, etc.

The dataset also includes indicators for whether the bonds are perpetual, convertible, pay-

in-kind, etc. Bond characteristics are merged with the TRACE dataset, and thus only

TRACE-reportable bonds that have traded between January 1, 2020 and June 30, 2020
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Table 1.2: Ratings Scales

Moody’s S&P Fitch V alue

Aaa AAA AAA 10
Aa1 AA+ AA+ 9
Aa2 AA AA 8
Aa3 AA− AA− 7
A1 A+ A+ 6
A2 A A 5
A3 A− A− 4
Baa1 BBB+ BBB+ 3
Baa2 BBB BBB 2
Baa3 BBB− BBB− 1
Ba1 BB+ BB+ 0
Ba2 BB BB −1
Ba3 BB− BB− −2
B1 B+ B+ −3
B2 B B −4
B3 B− B− −5
Caa1 CCC+ −6
Caa2 CCC CCC −7
Caa3 CCC− −8
Ca CC CC −9
C C C −10

D D −11

Credit ratings scales and corresponding numeric values for Moody’s, S&P, and Fitch.
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are included in our sample. We also filter out any variable-coupon, convertible, perpet-

ual or pay-in-kind securities as well as any security that appears in TRACE but is not in-

cluded in the Mergent FISD dataset. We further only keep issuers domiciled in the U.S.

since CCF eligibility was restricted to issuers with material U.S. operations.

We obtain bond ratings from Mergent FISD Bond Ratings dataset. This dataset con-

tains issue ratings from Moody’s, S&P, and Fitch, which are mapped by us to their cor-

responding numeric values according to Table 1.2. We compute issuer ratings from issue

ratings by selecting the minimal issue rating on senior unsecured debt per issuer.89 After

obtaining issuer ratings, we determine eligibility for direct cash bond support from the Fed

CCFs by using ratings as of March 22, 2020, and classify issuers as eligible if they were

rated as IG or had at least two IG ratings if the issuer had more than one issuer rating.10

To compute issue fixed effects, we aggregate issue ratings by using its maximal issue rating

and assign it to its respective rating bucket (eg. AAA, AA, A, BBB, BB, B).11 The results

are robust to other definitions aggregating issue ratings.

Thus, our sample is constructed using corporate bond transaction data from cleaned

Enhanced TRACE for the period between January 1, 2020 and June 30, 2020 merged with

8. Issue ratings take into consideration bond seniority in the capital structure and any collateral secu-

rity. See: https://www.spglobal.com/ratings/en/products-benefits/products/issue-credit-rat

ings.

9. Moody’s explicitly equates the two in its ratings definition, issuer ratings corresponding to the rat-

ings on senior unsecured bonds: “Long-Term Issuer Ratings are opinions of the ability of entities to honor

long-term senior unsecured financial obligations and contracts." See: https://www.moodysanalytics.co

m/-/media/products/Moodys-Rating-Symbols-and-Definitions.pdf.

10. In addition to using issuer ratings to determine eligibility, the Fed also restricted direct cash bond

support to securities with less than five years maturity. We explore this in our analysis by computing ef-

fects over a full sample and a sub-sample of bonds with less than five years maturity.

11. This is consistent with the fact that ETFs generally tend to use a less restrictive inclusion criteria

than the Fed CCFs, often considering a bond’s highest rating.
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the Mergent FISD Bond Issues and Bond Ratings information and filters. Daily volume-

weighted price and yield data is computed using trades of institutional size (i.e., greater

than or equal to $100,000). While this is a standard cleaning procedure, our results are

robust to using the entire sample of trades.

We compute G-spreads for bonds by differencing the yields on corporate bonds and

the corresponding zero-coupon bond spread of the same duration. The zero-coupon bond

spreads are generated using the Nelson-Siegel-Svensson yield curve parametrization of

Gurkaynak, Sack, and Wright [2006]. Data is available through the Federal Reserve.12

Since TRACE reports ‘clean’ bond prices without accrued interest, we compute the ac-

crued interest between a bond’s last coupon date and the settlement date and add this

to the ‘clean’ price to get the final ‘dirty’ bond price faced by an investor at settlement.

Spreads and bond prices are trimmed at the 1 percent and 99 percent levels to limit the

influence of outliers. Results are robust to using untrimmed data. Spread changes and

change in log bond prices are computed as one-day changes and, hence, are conditional

on the availability of trade-weighted data in the current and previous trading days.

As a robustness check, we proxy eligibility for direct cash bond support from the CCFs

by using the constituents of the Fed’s SMCCF Broad Market Index at inception.13 While

the creation of the SMCCF Broad Market Index was announced on June 15, 2020, the ini-

tial index constituent list dates from June 5, 2020. If this list of eligible issuers was both

the same set of eligible issuers as of the facility launch date on March 23, 2020 and could

have also been inferred by the markets using issuer ratings information, then it would

be a perfect proxy for eligible issuers. However, Flanagan and Purnanandam [2020] and

Gilchrist et al. [2021] show that the SMCCF Broad Market Index constituents are a subset

12. https://www.federalreserve.gov/data/nominal-yield-curve.htm

13. https://www.newyorkfed.org/markets/secondary-market-corporate-credit-facility/second

ary-market-corporate-credit-facility-broad-market-index
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of all eligible issuers and that certain characteristics can predict index inclusion. Conse-

quently, this proxy is a subset of the set of eligible issuers constructed using issuer ratings,

as we do in our main results. See Section 1.7.1 for further discussion.

Additionally, the paper uses CDS spread data obtained from Markit through WRDS to

compare market-based risk measures across issuers. The causal ML approach used in Sec-

tion 1.5.1 uses firm fundamental characteristics obtained from the Financial Ratios Suites

on WRDS.

1.3.3 Descriptive Statistics

Issuer Characteristics

Momin [2025b] examines the differences in firm fundamentals and CDS spreads across

publicly traded eligible and ineligible firms. Although there is substantial overlap and in

real and financial variables, eligible firms are larger, more liquid, and more solvent than in-

eligible firms. Likewise, while the distribution of CDS spreads across eligible and ineligible

firms show considerable overlap, ineligible issuers have larger CDS spreads, consistent with

ineligible issuers have lower credit ratings.

Issuer Capital Structure

Despite ineligible issuers having worse risk characteristics on average, this does not imply

that ineligible issuers’ bonds are strictly worse rated than eligible issuers’ bonds. Figure

1.1 shows the ratings distribution across eligible and ineligible traded issuers for issuer-

bond observations averaged over key event dates. While the vast majority of eligible is-

suers have IG-rated bonds, ineligible issuers have bonds spanning the HY and IG spec-

trum. The reason is principally due to some HY issuers issuing IG-rated debt. HY issuers

can issue bonds which are rated higher than their issuer rating if the bonds are sufficiently
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senior and are secured by collateral.

Figure 1.1 reinforces our concern about potential measurement issues when identifying

bonds eligible for direct cash bond support by the CCFs by issue rather than issuer rat-

ings. This would inadvertently classify the IG bonds of HY-rated issuers as eligible, which

is inconsistent with the CCF’s eligibility criteria. Similar concerns arise when using IG or

HY ETFs to track the relatively changes in eligible issuer bonds since ETFs typically use

bond ratings, not issuer ratings, for inclusion. On the other hand, the overlap in HY- and

IG-rated bonds across eligible and ineligible issuers suggests a natural identification strat-

egy: fix the bond rating (and other characteristics, such as maturity) and compare the rel-

ative changes in eligible versus ineligible issuer securities. This is the strategy we pursue in

the next section.

1.4 Treatment Effects for Eligible Issuers

1.4.1 Baseline Results

As a baseline, we compute estimates of the impact of the CCF announcements on eligible

issuer bond G-spreads versus ineligible issuer bond G-spreads, using issuer ratings to de-

termine eligibility. We use a difference-in-differences panel regression with fixed effects to

compare the relative change in spreads across eligible and ineligible issuers’ bonds. The

corresponding regression equation is:

∆Sijt =α + β1Eligiblei + β2Eventst + β3Eventst × Eligiblei + θ
Rating
jt + θ

Maturity
jt + ϵjt

(1.1)

where ∆Sijt is the change in the G-spread of bond j at time t and Eligiblei is an indica-

tor variable equal to one if issuer i is eligible for the Fed CCFs based on its issuer ratings

as of March 22, 2020. Eventst is an indicator variable equal to one if day t is an event day
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(e.g. March 23, 2020 or April 9, 2020), θRating
jt are fixed effects for bond j rating (i.e. Aaa,

Aa1, etc.) by week, and θMaturity
jt are fixed effects for bond remaining time-to-maturity

(i.e. < 1 year, 1-2 years, 2-3 years, 3-4 years, 4-5 years, and 5+ years) by week. We use

bond rating and time-to-maturity by date fixed effects due to the stationarity of our out-

come variables, which tend toward zero as we increase the time horizon of its average to

the full time-series. We compute fixed effects at the weekly instead of daily frequency to

avoid issues of multicollinearity arising between the fixed effects and indicator variables.

The inclusion of fixed effects approximates the comparison of spreads across differentially

eligible issuers, while holding bond-level rating and maturity fixed. Additionally, we note

that the parallel trends assumptions for our DiD regressions are satisfied as a result of us-

ing first-differenced, and hence, stationary, outcome variables.14

The results corresponding to the panel regression given by Equation (1.1) are reported

in Table 1.3. Columns (1) and (2) correspond to specifications where fixed effects are omit-

ted, while columns (3) and (4) report the coefficient estimates with fixed effects included.

Columns (1) and (3) are estimates over the full sample of bonds, while columns (2) and

(4) are estimates for the sample bonds with less than five years maturity. We note that

the coefficient estimates decrease with the inclusion of fixed effects, consistent with our ex-

pectations that these fixed effects absorb variation common across issue ratings or bond

maturities.

Our main estimates of interest correspond to the interacted variables, “March 23 X El-

igible” and “April 9 X Eligible,” which map to β3 in Equation (1.1). We focus on our full

specification with fixed effects: columns (3) and (4). We find that the coefficient estimates

for “March 23 X Eligible” are negative for the full sample and restricted sample with bonds

with less than five years maturity and significant at the one percent level. These values

14. We perform panel data unit root tests of our key outcome variables (e.g. change in G-spreads) and

find evidence consistent with this data being stationary (unreported).
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Table 1.3: Change in G-Spreads (Issuer Ratings as Proxy)

(1) (2) (3) (4)
<5yrs Maturity <5yrs Maturity

Eligible -2.0307 -2.2468 -0.6726 -0.8641
(2.3932) (3.1463) (0.6668) (1.2100)

March 23 62.3515∗∗∗ 90.6787∗∗∗ 16.2943 37.0732
(3.3844) (7.0570) (36.3108) (47.9197)

April 9 -138.4193∗∗∗ -172.0778∗∗∗ -104.2630∗∗∗ -130.8509∗∗∗
(3.5355) (7.5417) (9.8927) (12.9011)

March 23 X Eligible -106.4632∗∗∗ -145.9185∗∗∗ -95.9738∗∗∗ -135.5091∗∗∗
(3.0282) (6.6175) (17.8893) (28.4905)

April 9 X Eligible 90.2442∗∗∗ 116.6548∗∗∗ 65.0596∗∗∗ 87.0349∗∗∗
(3.1742) (7.0753) (12.4963) (16.3173)

Constant 2.4722 2.4600 1.5160 1.5448
(2.9531) (3.7777) (0.9777) (1.3948)

Issue Ratings by Week F.E. N N Y Y
Remaining Maturity by Week F.E. N N Y Y
Observations 4.304e+05 2.100e+05 4.303e+05 2.100e+05
R2 0.0030 0.0030 0.1206 0.1242
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table reports the regression coefficients and standard errors (double-clustered by issuer and time) for
∆Sijt = α+β1Eligiblei+β2Eventst+β3Eventst×Eligiblei+θRating

jt +θMaturity
jt + ϵjt. ∆Sijt is the change in

G-spread of bond j at time t for issuer i, Eligiblei is an indicator variable equal to one if issuer i is eligible for
the Fed CCFs based on its issuer ratings as of March 22, 2020, Eventst is an indicator variable equal to one if
day t is an event day, θRating

jt are fixed effects for bond j rating (i.e. Aaa, Aa1, etc.) by week, and θMaturity
jt

are fixed effects for bond remaining time-to-maturity (i.e. < 1 year, 1-2 years, 2-3 years, 3-4 years, 4-5 years,
and 5+ years) by week. Columns (1) and (2) report the regression estimates without fixed effects. Columns
(3) and (4) report the estimates with fixed effects. Columns (1) and (3) show the results for the regression
run over the full sample of bonds, while columns (2) and (4) show the results for the sample of bonds with
less than five years maturity (the CCFs targeted bonds with less than five years maturity for eligible issuers).
From the table, we see that eligible issuer bonds tightened more than ineligible issuer bonds on March 23,
2020, as indicated by the coefficient estimate for “March 23 X Eligible.” On April 9, 2020, we uncover the
opposite relationship, as indicated by the positive coefficient estimate for “April 9 X Eligible.” Since the Fed
also announced purchases of HY ETFs on April 9, 2020, comparing bonds across issuer eligibility cannot
uncover the effect of the CCFs expansion on bond spreads for issuer eligible direct cash bond support.
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result indicate that eligible issuer bonds decreased -96 bps and -135 bps, respectively, for

the full sample and restricted sample, which is consistent with the CCFs targeting bonds

with less than five years maturity for eligible issuers. Note that on this date the Fed only

indicated that it would support eligible issuer bonds, either directly through primary or

secondary market purchases, or through purchases of IG ETFs. Hence, the estimates for

March 23, 2020 provide a clearer estimate of the treatment effect on bond spreads for is-

suers eligible for direct cash bond support under the Fed CCFs.15 These estimates are also

consistent with the finding in Haddad, Moreira, and Muir [2025] that the March 23, 2020

introduced a ‘Fed put’ on eligible issuers’ bonds, protecting against downside risk.

In contrast, the Fed’s announcement on April 9, 2020, while expanding the size of the

facilities (from $300 billion to $750 billion), featured two other innovations: 1. the inten-

tion to purchase HY ETFs and 2. reinstating the eligibility of ‘Fallen Angels,’ issuers eli-

gible as of March 22, 2020, but who were downgraded out of eligibility between March 22,

2020 and April 9, 2020. These are summarized in Table 1.1.

The coefficient estimates on “April 9 X Eligible” in Table 1.3 measure the relative im-

pact of the program expansion. The positive coefficients indicate that ineligible issuers’

bonds tightened relatively more than those of eligible issuers. In the full specification,

columns (3) and (4), on April 9, 2020, we find that ineligible issuer spreads experienced

65 bps and 87 bps additional tightening, compared to eligible issuer spreads, in the full

sample and restricted sample, respectively. Given that the Fed indicated that it would

purchase HY ETFs in much smaller quantities than other securities, a fact validated by

ex post purchases,16 these results imply that ineligible issuer securities were far more re-

sponsive to announced monetary stimulus.

15. Implicitly, we assume that IG-rated bonds across differentially eligible issuers would experience the

same effect from IG ETF purchases, holding fixed bond rating and maturity.

16. Realized purchases of HY ETFs totaled less than 8% of all CCF purchases.
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Consequently, simply comparing the relative movements in eligible versus ineligible is-

suer spreads does not adequately identify the treatment effect of the expansion of direct

cash bond support on the spreads of eligible issuers’ bonds. To this end, we exploit a quasi-

natural experiment around the reinstated eligibility of Fallen Angel issuers to better mea-

sure the effect of the facilities’ expansion, which is reported in Table 1.6.

Robustness

Robustness checks are provided in Section 1.7.1 in the Appendix. First, change in log

bond prices, instead of change in bond spreads, is used as the outcome variable when re-

estimating Equation (1.1). Unsurprisingly, the qualitative results are similar in return

space, with eligible issuer bond prices showing a relatively higher increase on March 23

and ineligible issuer bond prices showing a relatively higher increase on April 9.

Additionally, Equation (1.1) is re-estimated in spread space while proxying eligible is-

suers using the SMCCF Broad Market Index constituents. The Fed announced the SM-

CCF Broad Market Index on June 15, 2020 ahead of purchases of secondary market cash

bonds on June 16, 2020. The index constituents are a subset of all eligible issuers. While

the qualitative patterns of the estimated coefficients is similar to Table 1.3, magnitudes are

strikingly smaller. This appears consistent with the findings of Flanagan and Purnanan-

dam [2020] that the Fed did not select the bonds that experienced the greatest decline in

prices (increase in spreads) for inclusion into the index and hence, for purchase by the SM-

CCF.

1.4.2 Measurement Error from Using Issue Ratings

In Table 1.4, we re-run the specification given by Equation (1.1), but instead proxy issue

eligibility by issue-level ratings, as of March 22, 2020, instead of using issuer-level ratings

as the Fed criteria stipulates. We do this to quantify the bias that results from using an
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improper proxy for issue eligibility. This is an important question since we find that the

literature uses such proxies when analyzing the effects of the facilities across IG and HY

issuers.17 Consequently, our specification becomes:

∆Sijt =α + β1IG Issueij + β2Eventst + β3Eventst × IG Issueij + θ
Rating
jt + θ

Maturity
jt + ϵjt

(1.2)

where the subscript on the variable IG Issueij suggests that its possible for issuers i to

have some issues j classified as eligible for the CCFs and others ineligible, depending on

the issue rating. Figure 1.1 shows that a nontrivial of HY issuers have both IG and HY

bonds, which give rise to the preceding dynamic.

Comparing columns (3) and (4) of Table 1.4 with columns (3) and (4) of Table 1.3, we

find that the coefficient estimates for the interacted event and eligibility proxy variable

for March 23, 2020 are roughly the same, suggesting that using issue ratings does not sig-

nificantly bias the results. The values are -96 bps and -136 bps for “March 23 X Eligible”

in Table 1.3 versus -100 bps and -135 bps for “March 23 X IG Issue” in Table 1.4 for all

bonds and bonds with less than five years maturity, respectively. In contrast, we find that

there is notable distortion of the coefficient estimates for April 9, 2020. We compute coeffi-

cient estimates of 65 bps and 87 bps for “April 9 X Eligible” in Table 1.3 versus 91 bps and

107 bps for “April 9 X IG Issue” in Table 1.4 for all bonds and bonds with less than five

years maturity, respectively. Moreover, the common effect on all bonds on April 9, 2020 is

denoted by the “April 9” variable in Tables 1.3 and 1.4 and is estimated to be roughly the

same.

17. These include papers studying prices/spread reactions, as well as liquidity impacts: Boyarchenko,

Kovner, and Shachar [2020], D’Amico, Kurakula, and Lee [2020], Haddad, Moreira, and Muir [2021], Kar-

gar et al. [2021], O’Hara and Zhou [2021], and Nozawa and Qiu [2021]. Notable exceptions are Flanagan

and Purnanandam [2020] and Gilchrist et al. [2021], both of which limit their analyses to IG issuers.
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Table 1.4: Change in G-Spreads (Issue Ratings as Proxy)

(1) (2) (3) (4)
<5yrs Maturity <5yrs Maturity

IG Issue -1.8840 -1.8512
(3.2672) (3.8830)

March 23 71.7128∗∗∗ 94.5870∗∗∗ 25.6632 43.0376
(5.2138) (9.8448) (42.9512) (54.3325)

April 9 -158.6382∗∗∗ -186.6985∗∗∗ -129.0811∗∗∗ -150.5372∗∗∗
(5.5242) (10.6646) (4.4110) (10.1600)

March 23 X IG Issue -109.9258∗∗∗ -142.3483∗∗∗ -100.2265∗∗∗ -135.0450∗∗∗
(5.5746) (10.1711) (26.2299) (38.2180)

April 9 X IG Issue 109.5167∗∗∗ 129.2813∗∗∗ 91.0465∗∗∗ 107.0200∗∗∗
(5.2386) (10.5055) (7.5892) (13.8572)

Constant 2.4427 2.2147 0.9900 0.8904
(3.7445) (4.3929) (0.7378) (0.9631)

Issue Ratings by Week F.E. N N Y Y
Remaining Maturity by Week F.E. N N Y Y
Observations 4.304e+05 2.100e+05 4.303e+05 2.100e+05
R2 0.0029 0.0028 0.1206 0.1241
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table reports the regression coefficients and standard errors (double-clustered by issuer and time) for
∆Sijt = α + β1IG Issueij + β2Eventst + β3Eventst × IG Issueij + θRating

jt + θMaturity
jt + ϵjt. ∆Sijt is the

change in G-spread of bond j at time t for issuer i, IG Issueij is an indicator variable equal to one if issue j
is eligible for the Fed CCFs based on its issue ratings as of March 22, 2020, Eventst is an indicator variable
equal to one if day t is an event day, θRating

jt are fixed effects for bond j rating (i.e. Aaa, Aa1, etc.) by week,
and θMaturity

jt are fixed effects for bond remaining time-to-maturity (i.e. < 1 year, 1-2 years, 2-3 years, 3-4
years, 4-5 years, and 5+ years) by week. In contrast to Table 1.3, treated bonds are determined by issue
ratings, as opposed to issuer ratings. Columns (1) and (2) report the regression estimates without fixed
effects. Columns (3) and (4) report the estimates with fixed effects. Columns (1) and (3) show the results
for the regression run over the full sample of bonds, while columns (2) and (4) show the results for the sample
of bonds with less than five years maturity. Similar to Table 1.3, we see that eligible issuer bonds tightened
more than ineligible issuer bonds on March 23, 2020, as indicated by the coefficient estimate for “March
23 X Eligible.” Similarly, on April 9, 2020, we find the opposite relationship, as indicated by the positive
coefficient estimate for “April 9 X Eligible.” However, in contrast to Table 1.3, we find a larger estimate for
“April 9 X Eligible,” which we attribute to the bias induced by incorrectly using issue ratings, as opposed to
issuer ratings, to identify treated bonds.
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Consequently, the issue ratings identification leads one to conclude that eligible issuer

bonds widened 26 bps and 20 bps more on April 9, for all bonds and bond with less than

five years maturity, respectively, than the more accurate specification proxying issuer eli-

gibility using issuer ratings. Stated otherwise, the relative effect on bonds eligible for di-

rect cash bond support is underestimated when using issue ratings to determine eligibility.

This result is driven by the IG bonds of HY issuers being classified as eligible for direct

cash bond support, contrary to the stated eligibility criteria. As shown in Table 1.1, the

IG bonds of eligible issuers stood to benefit both from expanded IG ETF purchases and

greater direct support. In contrast, the IG bonds of HY issuers only benefited from poten-

tial greater IG ETFs. Hence, classifying IG bonds of HY issuers as eligible for direct bond

support dilutes the estimated relative effect of the facility expansion on April 9, 2020.

1.4.3 Quasi-Natural Experiment

The focus of this paper has been on determining the treatment effect on issuer spreads

from receiving direct cash bond support from the CCFs. The coefficient on the variable

“March 23 X Eligible" in Table 1.3 in columns (3) and (4) may provide one estimate of

this effect, since on March 23, 2020 the Fed’s announcements primarily targeted eligible

issuers, at least for the initial level of support the Fed pledged (up to $300 bn). To obtain

an estimate of this effect, issue rating and maturity fixed effects are used to approximate

the comparison of bonds with similar ratings and maturity but with differently eligible is-

suers, exploiting the capital structure heterogeneity for identification, as shown in Figure

1.1. Assuming that the effects from announcing purchases of IG ETFs net out across sim-

ilarly rated bonds with similar durations, the ‘March 23 X Eligible" coefficient estimates

the effect of direct cash bond support on eligible issuers’ spreads.

However, the coefficient estimates for the effect on April 9, 2020 do not provide a mean-

ingful estimate of the effects of expanded direct cash bond support, since the Fed also an-
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nounced purchases of HY ETFs. This is reinforced by the negative coefficient estimates

for the “April 9” indicator variable in Table 1.3, which suggests that spreads significantly

tightened for all issuers, while the positive coefficient estimates for the interacted term

“April 9 X Eligible" suggests eligible issuers’ spreads widened relative to ineligible issuers’

spreads. Stated otherwise, ineligible issuers’ spreads were more sensitive to the announce-

ment of HY ETF purchases than eligible issuers’ spreads were to expanded direct cash

bond support.

To identify the impact of the total promised direct cash bond support, we exploit the

quasi-natural experiment around the reinstated eligibility of Fallen Angel issuers on April

9, 2020. These issuers were eligible at initial program announcement date on March 23,

2020, but then fell out of eligibility as they were downgraded between March 23, 2020 and

April 9, 2020. To get a baseline sense of the movement in Fallen Angel issuers, we modify

Equation (1.1) to add an additional interaction term:

∆Sijt =α + β1Eligiblei + β2Fallen Angeli + β3Eventst

+ β4Eventst × Eligiblei + β5Eventst × Eligiblei × Fallen Angeli + θ
Rating
jt

+ θ
Maturity
jt + ϵjt

(1.3)

where Fallen Angeli indicates if issuer i is a Fallen Angel as defined above. Since Fallen

Angel issuers are a subset of eligible issuers, we drop the term , Eligiblei × Fallen Angeli

term from the saturated regression.

The results of the regression of Equation (1.3) is shown in Table 1.5. We first check to

see how the coefficients on “March 23 X Eligible” and “April 9 X Eligible” change with the

effect from the Fallen Angel issuers separated out. Compared to Table 1.3, in columns (3)

and (4), we find that the coefficient estimates are roughly unchanged for the “March 23 X

Eligible” estimate. However, we find that the coefficient on “April 9 X Eligible” now in-

creases to 78 bps from 65 bps for all bonds and to 104 bps from 87 bps for bonds with less
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Table 1.5: Change in G-Spreads (with Fallen Angel Interaction)

(1) (2) (3) (4)
<5yrs Maturity <5yrs Maturity

Eligible -2.0283 -2.2572 -0.7865 -1.1253
(2.4711) (3.2700) (0.6733) (1.3835)

Fallen Angel -0.0828 0.2670 1.1462 1.3553
(2.8414) (3.5955) (1.8098) (2.4170)

March 23 62.3515∗∗∗ 90.6787∗∗∗ 16.5548 37.6210
(3.3819) (6.9953) (36.3555) (48.0478)

April 9 -138.4193∗∗∗ -172.0778∗∗∗ -108.1523∗∗∗ -134.8096∗∗∗
(3.5358) (7.4739) (6.1970) (9.9283)

March 23 X Eligible -108.0201∗∗∗ -148.7916∗∗∗ -97.4222∗∗∗ -138.4093∗∗∗
(2.9902) (6.7883) (17.9364) (28.7550)

April 9 X Eligible 99.0936∗∗∗ 129.9784∗∗∗ 78.1181∗∗∗ 104.4044∗∗∗
(3.1483) (7.2762) (8.1861) (12.8580)

March 23 X Eligible X Fallen Angel 76.4135∗∗∗ 108.7288∗∗∗ 55.3663∗∗ 84.0850∗∗∗
(21.6537) (27.9802) (22.1747) (28.3553)

April 9 X Eligible X Fallen Angel -244.7509∗∗∗ -289.0271∗∗∗ -229.2277∗∗∗ -271.9726∗∗∗
(14.3982) (7.1994) (14.7137) (16.9799)

Constant 2.4722 2.4600 1.5791 1.7033
(2.9533) (3.7782) (1.0371) (1.5822)

Issue Ratings by Week F.E. N N Y Y
Maturity Bucket by Week F.E. N N Y Y
Observations 4.304e+05 2.100e+05 4.303e+05 2.100e+05
R2 0.0036 0.0037 0.1211 0.1247
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table reports the regression coefficients and standard errors (double-clustered by issuer and time) for
∆Sijt = α + β1Eligiblei + β2Fallen Angeli + β3Eventst + β4Eventst × Eligiblei + β5Eventst × Eligiblei ×
Fallen Angeli + θRating

jt + θMaturity
jt + ϵjt. As in Table 1.3, ∆Sijt is the change in G-spread of bond j at time

t for issuer i, Eligiblei is an indicator variable equal to one if issuer i is eligible for the Fed CCFs based on
its issuer ratings as of March 22, 2020, Eventst is an indicator variable equal to one if day t is an event day,
θRating
jt are fixed effects for bond j rating (i.e. Aaa, Aa1, etc.) by week, and θMaturity

jt are fixed effects for
bond remaining time-to-maturity (i.e. < 1 year, 1-2 years, 2-3 years, 3-4 years, 4-5 years, and 5+ years) by
week. The new variable, Fallen Angeli, indicates if issuer i was eligible for the Fed CCFs on March 23, 2020
but lost eligibility between March 23, 2020 and April 9, 2020 due to being downgraded. On April 9, 2020,
the Fed restored the eligibility of these issuers. Columns (1) and (2) report the regression estimates without
fixed effects. Columns (3) and (4) report the estimates with fixed effects. Columns (1) and (3) show the
results for the regression run over the full sample of bonds, while columns (2) and (4) show the results for
the sample of bonds with less than five years maturity. We find that Fallen Angel issuer bonds tighten less
than eligible issuer bonds on March 23, 2020 and tighten significantly more than eligible issuer bonds on
April 9, 2020.
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than five years maturity. There are two forces at play: 1. the number of Fallen Angel is-

sues is orders of magnitudes lower than the overall number of eligible issues, 2. Fallen An-

gel issues can be more sensitive to the facility announcements. On balance, the latter force

dominated the former in increasing the coefficient estimate for “April 9 X Eligible.” That

is, the sharp narrowing of Fallen Angel issuer spreads decreased the overall average effect

estimated for eligible issuer spreads in Table 1.3. With this effect partialed out, we find

instead that non-Fallen Angel eligible issuer bonds widened more compared to ineligible

issuer bonds than previously estimated.

The additional spread narrowing or widening of Fallen Angel issuer spreads are given

by the coefficients “March 23 X Eligible X Fallen Angel’ and “April 9 X Eligible X Fallen

Angel” in Table 1.5. Interestingly, we estimate a positive effect on March 23, 2020 but a

negative effect on April 9, 2020. The former suggests that Fallen Angel issuers spreads did

not narrow as much as other eligible issuer spreads. However, by summing the coefficients

on “Eligible”, “Fallen Angel”, “March 23”, “March 23 X Eligible”, and “March 23 X Eligible

X Fallen Angel”, we do see that Fallen Angel issuers spreads did decline on average on this

date. This suggests that the markets factored in the possibility that Fallen Angel issuers

would, in fact, be downgraded out of eligibility, thus losing CCF support.

In contrast, when Fallen Angel issuer eligibility was restored on April 9, 2020, we find

that their spreads narrowed 229 bps and 272 bps more compared to eligible issuer spreads

for all bonds and bonds with less than five years maturity, respectively. This may be one

potential estimate of the counterfactual treatment effect on ineligible issuer spreads we are

after, since Fallen Angel issuers were technically ineligible for CCF support entering April

9, 2020. However, other eligible issuers may not be the most appropriate control group for

the Fallen Angel issuers. First, these issuers have a better risk profile than the Fallen An-

gel issuers, and second, the effect of additional stimulus on spreads may generally not be

as strong as initial announcement effects pledging stimulus for the bonds of certain issuers.
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Consequently, both of these reasons may lead to an overstatement of the counterfactual

treatment effect we see to estimate. Instead, we will seek to refine this estimate by choos-

ing a more suitable control group that may better share the risk profile of the Fallen Angel

issuers than other eligible issuers do.

Figure 1.2: CDS Spreads of Control (IG Ineligible) and Treatment (Fallen Angel) Share
Common Support

The figure plots the log CDS spread distributions of IG ineligible (i.e. those issuers with multiple ratings
where exactly one is IG so are not eligible for the Fed CCFs) and Fallen Angel issuers on March 20, 2020.
We find that IG ineligible and Fallen Angel issuers share a common support.

Specifically, we compare Fallen Angel issuers to issuers ‘just below’ the Fed’s eligibility

cutoff: issuers with multiple ratings and exactly one IG rating. By the CCF criteria, these

issuers are ineligible since they lack at least two IG ratings when they have more than one

rating. Figure 1.2 compares the distribution of log CDS spreads for IG but never eligible

issuers with Fallen Angel issuers. We see that the support of the two groups coincides,
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Figure 1.3: Capital Structure of Control (IG Ineligible) and Treatment (Fallen Angel)
Overlap

The figure shows the count of issue ratings for IG ineligible and Fallen Angel bonds which traded on April 9,
2020. We find considerably less heterogeneity between IG ineligible and Fallen Angel issuer capital structures
along the bond risk dimension than we see for the broader sample of eligible and ineligible issuer capital
structures, as seen in Figure 1.1. On this note, we find relatively similar proportions of IG and HY debt by
IG ineligible and Fallen Angel issuers. While our identification strategy compares same-rated, same-maturity
but differentially eligible bonds, the similar exposure to IG and HY ETFs across IG ineligible and Fallen
Angel issuers is an advantage compared to comparing the broader sample of eligible and ineligible issuer
bonds with each other, since the broader samples are differentially exposed to IG and HY ETFs.
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suggesting that the market-based risk assessment of the two groups are similar. Figure

1.3 shows the capital structure of Fallen Angel and IG ineligible issuers.18 While there is

a higher count of IG ineligible issues, we see that the number of issues is roughly compara-

ble across the two groups and that the relative risk distribution of their capital structures,

as of April 9, 2020, is aligned around the IG/HY cutoff. Besides reinforcing the argument

that the relative risk in Fallen Angel and IG ineligible bonds is similar, it also suggests

that both groups are similarly exposed to the Fed’s ETF purchases, either through IG or

HY ETFs.

To recover the treatment effect of the full promise of direct cash bond support implied

by the final size of the CCFs, we specify a saturated regression comparing these two groups:

∆Sijt = β0 + β1IG (Max Rating)i + β2Eligiblei + β3Fallen Angeli

+ β4Eventst + β5Events X IG (Max Rating)it

+ β6Eventst × IG (Max Rating) X Eligibleit

+ β7Eventst × IG (Max Rating) X FAit

+ θ
Rating
jt + θ

Maturity
jt + ϵjt

(1.4)

where IG (Max Rating)i is the sample of issuers which have a maximum issuer rating that

is IG, as of March 22, 2020. Since Fallen Angel ⊂ Eligible ⊂ IG (Max Rating), the

above is a saturated regression with collinear terms omitted. To obtain our estimate for

the counterfactual treatment effect, we subtract the effect on IG but ineligible issuers from

the effect on Fallen Angel issuers:

• Effect on IG but ineligible issuers given by: β0 + β1 + β4 + β5

18. The approach to aggregate bond-level ratings is discussed in Section 1.3. It reflects that the inclu-

sion criteria for IG ETFs is generally less restrictive than the eligibility criteria for the CCFs. The panel

regression estimates are robust to using alternative rating aggregations.
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• Effect on Fallen Angel issuers given by: β0 + β1 + β2 + β3 + β4 + β5 + β6 + β7

• Estimate of additional effect of Fed CCF eligibility given by difference: β2+β3+β6+

β7.

After estimating Equation (1.4), we compute the effects on the control (IG ineligible)

and treatment (Fallen Angel) groups by summing coefficients as detailed above. We also

compute the variance-covariance matrix for the coefficients by double-clustering on issuer

and time. The difference between the treatment and control group gives our estimate of

the treatment effect of the full promise of direct cash bond support implied by the final

size of the CCFs. Standard errors for the summed estimates are obtained using the delta

method. These results are reported in Table 1.6.

We can interpret the March 23, 2020 treatment effect as an alternative estimate of the

effect the facilities had on eligible issuers, with the caveat that Table 1.5 suggests that the

market seems to have priced in the possibility that Fallen Angels would fall out of eligibil-

ity. This may explain why the resulting treatment effect estimate is smaller than what we

compute on the ‘March 23 X Eligible’ coefficients in Table 1.3. In fact, Table 1.6 presents

evidence supporting a null effect for both issuers, as well as their difference, on March 23,

2020.

The treatment effect estimates for April 9, 2020 are more precisely estimated as indi-

cated by the standard errors and are significant at the one percent level. We estimate that

Fallen Angel spreads declined 126 bps points more than the control group for all bonds

and 86 bps more for bonds with less than five years maturity. Contrary to expectations

and other estimates, the treatment effect is larger when computed over all bonds than for

bonds with less than five years maturity. This reversal seems to be driven by a proportion-

ally greater decline from the control group’s spreads versus that of Fallen Angels for bonds

with less than five years maturity, though both groups show greater declines for shorter

maturity bonds, as expected.
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Table 1.6: Change in G-Spreads (Quasi-Natural Experiment)

March 23, 2020
All 5yrs Maturity

Effect on IG Ineligible Issuers: 43.1 bps 81.9 bps
(35.8 bps) (54.2 bps)

Effect on Fallen Angels: -22.8 bps -13.5 bps
(33.3 bps) (43.6 bps)

Treatment Effect: -65.9 bps -95.4 bps
(46.0 bps) (61.3 bps)

April 9, 2020
All 5yrs Maturity

Effect on IG Ineligible Issuers: -132.8 bps∗∗∗ -217.4 bps∗∗∗
(18.1 bps) (30.4 bps)

Effect on Fallen Angels: -258.4 bps∗∗∗ -303.0 bps∗∗∗
(18.5 bps) (19.4 bps)

Treatment Effect: -125.6 bps∗∗∗ -85.6 bps∗∗∗
(24.5 bps) (35.1 bps)

Standard errors in parentheses. Standard errors are double-clustered by issuer and time.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table shows particular linear combinations of coefficient estimates corresponding to the
regression ∆Sijt = β0 + β1IG (Max Rating)i + β2Eligiblei + β3Fallen Angeli + β4Eventst +
β5Events X IG (Max Rating)it + β6Eventst × IG (Max Rating) X Eligibleit + β7Eventst ×
IG (Max Rating) X FAit + θRating

jt + θMaturity
jt + ϵjt. ∆Sijt is the change in G-spread of bond j at

time t for issuer i, IG (Max Rating)i indicates if the maximum issuer rating of issuer i is IG on March 22,
2020, Fallen Angeli indicates if issuer i is a Fallen Angel (see text for definition), Eligiblei is an indicator
variable equal to one if issuer i is eligible for the Fed CCFs based on its issuer ratings as of March 22, 2020,
Eventst is an indicator variable equal to one if day t is an event day, θRating

jt are fixed effects for bond j

rating (i.e. Aaa, Aa1, etc.) by week, and θMaturity
jt are fixed effects for bond remaining time-to-maturity

(i.e. < 1 year, 1-2 years, 2-3 years, 3-4 years, 4-5 years, and 5+ years) by week. The effect of the CCF
announcements on IG ineligible issuers (see text for definition) are given by β0 + β1 + β4 + β5. The effect
on Fallen Angel issuers are given by β0 + β1 + β2 + β3 + β4 + β5 + β6 + β7. Hence, our estimates of the
effect of the full promise of direct cash bond support implied by the final size of the CCFs are given by
the difference, specifically for April 9, 2020 (see text for explanation). This is given by β2 + β3 + β6 + β7.
Standard errors are computed using the delta method on the variance-covariance matrix for the coefficients,
which are double-clustered by issuer and time.
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Table 1.7: Treatment Effects of CCF Announcements on Bond Support

Treatment Effect Announcement Date Identification Strategy Estimate
Direct Cash Bond Introduction of CCFs Panel DiD -96 bps
Support on Eligible Issuers on March 23, 2020 with Fixed Effects (17.9 bps)
Direct Cash Bond and ETF Introduction of CCFs Causal ML -553 bps
Support on Ineligible Issuers on March 23, 2020 using Characteristics (144.1 bps)
Direct Cash Bond Expansion of CCFs Quasi-Natural -126 bps
Support on Eligible Issuers on April 9, 2020 Experiment (DiD) (24.5 bps)
Standard errors in parentheses

The table summarizes the treatment effect estimates presented in this paper. Eligible issuers are those
issuers who were eligible for direct cash bond support from the Fed CCFs, as per the eligibility criteria
presented in Section 1.3. The effect shown in the first row is taken from column (3) in Table 1.3 and
corresponds to the parameter estimate for β3 in Equation (1.1). This is the effect on eligible issuers’ spreads
from the implied direct cash bond support when the facilities were initially sized to be up to $300 bn. The
effect shown in the third row is estimated from the quasi-natural experiment reinstating the eligibility of
Fallen Angel issuers on April 9, 2020, when the size of the facilities were also increased to up to $750 bn.
The estimate is taken the second column in Table 1.6 and corresponds to the treatment effect estimate
computed from the saturated regression presented in Equation (1.4). The effect shown in the second row is
the counterfactual treatment effect for ineligible issuers had they also received direct cash bond support and
any additional indirect support from ETFs when the facilities were initially announced. The effect estimate
is taken from Figure 1.4 and corresponds to the model specification with 10 years of feature history and 1%
missingness tolerance for features. Table 1.15 reports the estimates across all model specifications.

Recall that implied treatment effects for direct cash bond support on eligible issuers’

spreads for the initial size of the facilities are presented in Table 1.3 as the coefficient es-

timates for the ‘March 23 X Eligible’ interacted variable. These are -96 bps for all bonds

and -136 bps for bonds with less than five years maturity. While the potential size of the

facilities were increased by 150% from $300 bn to $750 bn, the implied treatment effect is

not proportionally larger, even for the sample of all bonds (-96 bps versus -126 bps). This

is consistent with the findings of Haddad, Moreira, and Muir [2025] that markets mostly

priced in downside protection for IG bonds on March 23, 2020 when support was initially

announced (extensive margin) and did not price in proportionally more downside protec-

tion on April 9, 2020 when the potential extent of support was significantly increased (in-

tensive margin).
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1.5 Counterfactual Treatment Effects for Ineligible Issuers

1.5.1 Causal Machine Learning Approach with High-Dimensional Controls

Section 1.4.1 presented an empirical strategy to estimate the effects of the initial announce-

ment of the CCFs on March 23, 2020 on eligible issuers’ bond spreads. The effect of the

initially announced direct cash bond support is isolated by comparing bonds with simi-

lar ratings and maturity but with issuers that were differentially eligible for direct cash

bond support from the CCFs, using panel DiD regressions with fixed effects. Section 1.4.3

exploits a quasi-natural experiment around the eligibility of Fallen Angels, as well as plau-

sibly exogenous variation around the eligibility criteria, to measure the effects of the im-

plied expansion of direct cash bond support via the CCFs on April 9, 2020 on eligible

issuers’ bond spreads. The treatment group, Fallen Angels, is compared with a control

group, similarly rated but never eligible issuers, to isolate the effects of the final, expanded

promise of direct cash bond support implied by the potential size of the facilities. These

two groups are shown to have similar risk characteristics, as implied by CDS spreads, as

well as similar distributions of IG and HY bonds. These effects are summarized in Table

1.7.

This section estimates the counterfactual treatment effect for ineligible issuers had they

received direct cash bond support, as well as any additional implied ETF support,19 at the

initial introduction of the CCFs on March 23, 2020, which is also summarized in Table 1.7.

To do so, we use the identification method based on the two-step semi-parametric DiD es-

timator presented in Momin [2025b], which is based on Farrell, Liang, and Misra [2021a]

19. Recall that ineligible issuers have IG bonds, as shown in Figure 1.1, so would have benefited from

the announced purchases of IG ETFs on March 23, 2020. However, indirect support for HY bonds through

HY ETFs is not observed on March 23, 2020. Nonetheless, because eligible issuers’ bonds reflect both di-

rect cash bond support and indirect support for IG ETFs, the causal ML methodology used in this section

invariably captures both effects since direct cash bond support is not separately identified.
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and Farrell, Liang, and Misra [2021b]. The identification strategy exploits the use of high-

dimensional features, and the estimator accounts for possible heterogeneous treatment ef-

fects, which could be important as several papers identified the heterogeneous dynamics of

firms during the pandemic.20

The structural equation representing the potential outcomes model is given by:

∆Sijt = α(Xi) + β(Xi)Eligiblei + ϵijt (1.5)

where ∆Sijt is the change in the G-spread for bond j for issuer i at time t from the pre-

vious market close, Xi are a collection of pre-treatment covariates (data realized on or

before 2019Q4, see list in Section 1.7.2), and Eligiblei is an indicator if issuer i is eligible

for cash bond purchases under the CCFs. The α(Xi) and β(Xi) terms are non-parametric

functions of the pre-treatment covariates and are computed using deep neural networks. In

addition, the estimators for α(Xi) and β(Xi) require the estimation of a non-parametric

propensity score, p(Xi), which takes values between 0 and 1 and represents the probabil-

ity of a firm being treated, given its pre-treatment covariates. This is also done using deep

nets.

The distribution of the conditional average treatment effects (CATEs) is given by the

vector β(Xi). Note that β(Xi) reflects both the effects of direct cash bond support as well

as indirect support from ETF purchases, unlike the panel DiD regressions with issue rating

and maturity fixed effects presented in Section 1.4.1. The average treatment effect (ATE)

is given by E[β(Xi)] and so, incorporates potential heterogeneous responses. The ATE is

identified if the assumptions of unconfoundedness and the overlap condition holds. Uncon-

foundedness is justified on the basis of a high-dimensional feature set and estimation using

deep nets which permit rich, nonlinear interactions between features. Overlap is argued to

20. See Darmouni and Siani [2024], Greenwald, Krainer, and Paul [2023], Haque and Varghese [2021],

Hassan et al. [2023], Pagano and Zechner [2022].
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hold because ratings are slow-moving and far more stable than firm characteristics, allow-

ing for significant overlap in these distributions.21

In addition, if the unconfoundedness and overlap conditions are satisfied, we can com-

pute group average treatment effects, given by E[gβ(Xi)], where g is a vector of indicator

variables denoting group membership, i.e. for ineligible issuers, BBB-rated issuers, etc. We

can relax the condition of unconfoundedness to conditional no anticipation and parallel

trends to identify the average treatment effect on the treated (ATET). This is given by the

analogous DiD estimator for Equation (1.5).

The comparable estimates in Section 1.4 are given by the panel DiD regressions with-

out issue rating and maturity fixed effects in Equation (1.1). Hence, these capture both

the effects of direct cash bond support as well as indirect support from ETF purchases.

Additionally, since the causal ML approach requires exploiting variation in characteristics,

the empirical strategy in this section only considers the volume-weighted change in bond

spreads from public firms on March 23, 2020.22 Nonetheless, as discussed below, the esti-

mate for the ATET from both approaches are comparable.

Figure 1.4 shows the estimates for the causal ML model using 10 years of feature his-

tory with 1% missingness tolerance for the features. The list of features is shown in Table

2.10. Additionally, indicator variables for two-digit NAICS industry classification are in-

cluded. The deep net architectures for the potential outcomes and propensity score models

are given in Table 2.12. The estimates across all model specifications are reported in Table

1.15.

The estimator for the ATET is obtained by differencing the change in spreads of eligible

and ineligible issuers, as in the DiD panel regressions. For specifications with at least 5

21. See Momin [2025b] for further discussion on these assumptions, as well as explicit expressions for the

estimators.

22. There are 1,085 such observations.
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Figure 1.4: Treatment Effect Estimates for March 23, 2020

The figure shows the estimates for the causal ML model using 10 years of feature history with 1% missingness
tolerance for the features. The list of features is shown in Table 2.10. Additionally, indicator variables for
two-digit NAICS industry classification are included. The deep net architectures for the potential outcomes
and propensity score models are given in Table 2.12. The estimates across all model specifications are
reported in Table 1.15. The estimator for the ATET is obtained by differencing the change in spreads
of eligible and ineligible issuers, as in the DiD panel regressions. For specifications with at least 5 years
of feature history, the estimate ranges from -99.7 bps to -120.8 bps, comparable to the estimate of -106.5
bps from the panel DiD regression reported in column (1) of Table 1.3. The ATE estimate corresponds to
the estimator for E[β(Xi)] and at -134.9 is notably higher than the ATET estimate. This reflects the fact
that the counterfactual treatment effect estimates for ineligible firms are large. The GATE estimates are
indicated by ratings and correspond to estimates of E[gβ(Xi)], where β(Xi) is the vector of CATEs and g
is a vector of indicator variables denoting group membership. We find a generally monotonic decrease in
the GATE estimates (greater decrease in spreads) as the issuer credit rating deteriorates. This is consistent
with expectations that the bonds of lower-rated issuers would be more sensitive to intervention, as argued in
Brunnermeier and Krishnamurthy [2020]. The notable exception to the monotonic pattern is the GATE for
AAA-rated issuers of -40.1 bps versus the GATE for AA-rated issuers of -35.3. This is consistent with the
narrative that the highest rated securities faced the steepest sell-offs early in the pandemic due to investor
demand for liquidity [Haddad, Moreira, and Muir, 2021, He, Nagel, and Song, 2022, Ma, Xiao, and Zeng,
2022]. The counterfactual treatment effect for direct cash bond and ETF support for ineligible issuers is
given by the GATE for B-to-BB rated issuers. The estimate is sizable and statistically significant, ranging
from -464.2 bps to -562.6 bps for specifications with at least 5 years of feature history, albeit with large
standard errors. Given that the spreads of Fallen Angel issuers tightened by around 300 bps on April 9,
2020, as reported in column (1) of Table 1.5, this appears plausible.
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years of feature history, the estimate ranges from -99.7 bps to -120.8 bps, comparable to

the estimate of -106.5 bps from the panel DiD regression reported in column (1) of Table

1.3. The ATE estimate corresponds to the estimator for E[β(Xi)] and at -134.9 is notably

higher than the ATET estimate. This reflects the fact that the counterfactual treatment

effect estimates for ineligible firms are large.

The GATE estimates are indicated by ratings and correspond to estimates of E[gβ(Xi)],

where β(Xi) is the vector of CATEs and g is a vector of indicator variables denoting group

membership. We find that GATE estimates generally decrease (implying a greater impact

on spreads) as issuer credit rating deteriorates. This monotonic pattern is consistent with

expectations that the bonds of lower-rated issuers would be more sensitive to interven-

tion, as argued in Brunnermeier and Krishnamurthy [2020]. The notable exception to the

monotonic pattern is the GATE for AAA-rated issuers of -40.1 bps versus the GATE for

AA-rated issuers of -35.3. This is consistent with the finding that the highest rated securi-

ties faced the steepest sell-offs early in the pandemic due to investor demand for liquidity

[Haddad, Moreira, and Muir, 2021, He, Nagel, and Song, 2022, Ma, Xiao, and Zeng, 2022].

The counterfactual treatment effect for direct cash bond and ETF support for ineligible

issuers is given by the GATE for B-to-BB rated issuers. The estimate is sizable and sta-

tistically significant, ranging from -464.2 bps to -562.6 bps for specifications with at least

5 years of feature history, albeit with large standard errors. Interestingly, the causal ML

estimator picks up this sizable negative treatment effect despite spreads of ineligible is-

suers actually widening on March 23, 2020, as seen in the coefficient estimate of 62.4 bps

for “March 23” in column (1) of Table 1.3. Nonetheless, this sizable negative treatment ef-

fect appears plausible, given that the spreads of Fallen Angel issuers tightened by around

300 bps on April 9, 2020, as reported in column (1) of Table 1.5. Recall that Fallen Angel

issuers were eligible for direct cash bond support through the CCFs based on their issuer

ratings as of March 22, 2020. As such, these were generally the highest rated ineligible is-
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suers heading into April 9, 2020 when their eligibility was reinstated. Moreover, as seen

in Figure 1.3, Fallen Angel issuers held significant IG rated bonds through this period,

which should have benefited from continued indirect support through potential IG ETF

purchases by the CCFs. To the extent that ineligible issuers are lower-rated and more sen-

sitive to ETF purchases, the treatment effect of around -500 bps can be rationalized.

1.6 Conclusion

We estimate the treatment effects of implied direct cash bond support from the Fed’s CCFs

on corporate bond spreads. The measurement of treatment effects is complicated by the

staggered nature of the Fed CCF announcements that changed both the level of implied

support via the potential size of the facilities, as well as the breadth of securities targeted.

Particularly, corporate bonds experienced indirect support through the planned purchases

of ETFs.

To estimate the treatment effect from the initial policy announcement, we utilize panel

DiD regressions with issue ratings and maturity fixed effects. This approximates the ex-

periment where we hold fixed the rating and maturity of bonds and compare across dif-

ferentially eligible issuers. We note that several papers in the literature determine eligibil-

ity for direct cash support using issue rather than issuer ratings. We find that this results

in a measurement bias when assessing the change in the spreads of eligible issuers’ bonds

relative those of ineligible issuers, particularly for April 9, 2020. Using issue ratings to de-

termine eligibility underestimates the effect of the April 9, 2020 announcement on eligible

issuer bonds because it classifies the IG bonds of ineligible issuers as eligible.

We use a quasi-natural experiment to determine the effect of the expanded size of the

facilities on April 9, 2020 on issuers eligible for direct cash bond support. This involves

comparing Fallen Angel issuers, who were initially eligible for the facilities, fell out of eli-

gibility, and then had their eligibility reinstated, with a control group of issuers with simi-
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lar ratings but who were never eligible direct cash bond support. We show that these two

groups have similar distributions of CDS spreads and capital structures. While our esti-

mate of the treatment effect is larger in magnitude for April 9, 2020, the increase is not

proportional to the increase in the size of the facilities. This echoes findings that markets

priced in significant conditional policy support from the Fed at the initial announcement

date.

Identifying the counterfactual treatment effect for ineligible issuers had they received di-

rect cash bond support requires stronger assumptions. We use a causal ML approach that

uses a high-dimensional set of features to estimate the counterfactual treatment effect, as

well as average treatment effects by group. We confirm that the causal ML approach de-

livers estimates for the treatment effect for eligible issuers similar to the panel DiD regres-

sions without fixed effects. Averaged treatment effects across ratings buckets reveal a gen-

erally monotonic pattern with magnitudes increasing as credit quality deteriorates. The

exception to this is the effect for AAA-rated issuers, which is larger in magnitude than the

effect for AA-rated issuers. This heightened sensitivity for AAA-rated issuers is consistent

with the sell-off experienced in the safest securities at the onset of the pandemic, due to

heightened investor demand for liquidity. We estimate a sizable counterfactual treatment

effect for ineligible issuers and argue that it is plausible given the significant tightening of

Fallen Angel issuers’ spreads on April 9, 2020 when their eligibility for direct cash bond

support was reinstated.

While several papers have studied the financial effects of the Fed CCFs, including ours,

far fewer papers have studied the potential real effects of the Fed CCFs and its design.

Momin [2025b] and Momin [2025a] aim to fill these gaps.
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1.7 Appendix

1.7.1 Robustness

Return Space

As a check on results, we update the outcome variable in our regression specifications in

Section 1.4.1 to change in log bond prices, from change in bond spreads. The appeal of

using the change in log bond prices as the regressand is that transaction prices are directly

reported by TRACE.

Table 1.8 reports the relative changes in log bond prices for eligible issuer bonds and in-

eligible issuer bonds on the two main event dates including March 23, 2020 and April 9,

2020. Columns (1) and (2) of Table 1.8 present the regression results for the full sample

and the sub-sample of bonds maturing in less five years, without fixed effects. Columns (3)

and (4) repeat the regressions in columns (1) and (2) respectively, but including rating-

week and maturity-week fixed effects. The coefficients of interest are the interaction terms

between the event date and the eligibility dummy. As before, we find that eligible issuer

bonds experienced relatively greater increase in log bond prices on March 23, 2020, in both

the full sample and the sample containing bonds with maturities less than five years. Us-

ing issue ratings and maturity fixed effects, eligible issuer bonds experienced a higher re-

turn of 3.72 percent on March 23, 2020, relative to ineligible issuer bonds. For bonds with

less than five years maturity, eligible issuer bonds experienced 2.71 percent higher returns

compared to ineligible issuer bonds on the same day. In fact, while eligible issuer bonds

increase in log prices on March 23, 2020 ineligible issuer bonds continued to decrease in

prices and reached their trough on March 23. In contrast, ineligible issuer bonds enjoyed

relatively greater increase in log bond prices on April 9. Using issue ratings and maturity

fixed effects, ineligible issuer bonds experienced a higher return of 1.47 percent, relative to

ineligible issuer bonds. For bonds with less than five years maturity, ineligible issuer bonds
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Table 1.8: Change in Log Prices

(1) (2) (3) (4)
<5yrs Maturity <5yrs Maturity

Eligible 0.0561 0.0396 0.0227 0.0107
(0.0784) (0.0891) (0.0302) (0.0275)

March 23 -2.0193∗∗∗ -2.1996∗∗∗ -0.5026 -0.9625
(0.1605) (0.1040) (1.1060) (0.8812)

April 9 4.3257∗∗∗ 3.7855∗∗∗ 3.2744∗∗∗ 2.8066∗∗∗
(0.1755) (0.1106) (0.2142) (0.2135)

March 23 X Eligible 3.9629∗∗∗ 3.2772∗∗∗ 3.7199∗∗∗ 2.7132∗∗∗
(0.1492) (0.0981) (0.2551) (0.5640)

April 9 X Eligible -2.1414∗∗∗ -2.6724∗∗∗ -1.4698∗∗∗ -1.9348∗∗∗
(0.1655) (0.1039) (0.3053) (0.2897)

Constant -0.0565 -0.0421 -0.0340 -0.0221
(0.1019) (0.0942) (0.0359) (0.0308)

Issue Ratings by Week F.E. N N Y Y
Remaining Maturity by Week F.E. N N Y Y
Observations 4.317e+05 2.163e+05 4.317e+05 2.163e+05
R2 0.0039 0.0024 0.1732 0.1864
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Similar to Table 1.3, this table reports the regression coefficients and standard errors (double-clustered by
issuer and time) for Rijt = α + β1Eligiblei + β2Eventst + β3Eventst × Eligiblei + θRating

jt + θMaturity
jt + ϵjt.

Rijt is the change in log bond prices of bond j at time t for issuer i, Eligiblei is an indicator variable equal
to one if issuer i is eligible for the Fed CCFs based on its issuer ratings as of March 22, 2020, Eventst is an
indicator variable equal to one if day t is an event day, θRating

jt are fixed effects for bond j rating (i.e. Aaa,
Aa1, etc.) by week, and θMaturity

jt are fixed effects for bond remaining time-to-maturity (i.e. < 1 year, 1-2
years, 2-3 years, 3-4 years, 4-5 years, and 5+ years) by week. Columns (1) and (2) report the regression
estimates without fixed effects. Columns (3) and (4) report the estimates with fixed effects. Columns (1)
and (3) show the results for the regression run over the full sample of bonds, while columns (2) and (4) show
the results for the sample of bonds with less than five years maturity. The results here in ‘return-space’
corroborate our core results in ‘spread-space’ (Table 1.3): eligible issuer bonds experience higher returns
on the initial facility announcement date on March 23, 2020, and ineligible issuer bonds experience higher
returns on the facility expansion announcement date on April 9, 2020.
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experienced 1.93 percent higher returns compared to eligible issuer bonds on that day. All

estimated coefficients of interest are statistically significant at the one percent level.

SMCCF Index Constituents as Proxy

For additional robustness, we carry out our previous analyses while using the published

SMCCF Broad Market Index constituents to define the population of eligible and ineli-

gible issuers. While the creation of the SMCCF Broad Market Index was announced on

June 15, 2020, the initial index constituent list dates from June 5, 2020. This method to

identify issuer eligibility relies on the assumptions that this list of eligible issuers was the

same set of eligible issuers as of the facility launch date on March 23, 2020 and that these

eligible issuers could have been correctly inferred by the market using publicly-available

information. As discussed in Section 1.3, proxying eligible issuers this way likely identi-

fies a subset of the true set of eligible issuers on the event dates. Nonetheless, the SMCCF

Broad Market Index constituents published by the Fed bypasses the many issues involved

in attempting to accurately identify the set of eligible issuers. Thus, it is important to see

if our previous results are robust to this alternative method of identifying eligible issuers.

Table 1.9: Ratings Distribution of SMCCF Holdings and Index

Rating SMCCF Holding SMCCF Broad Market Index

AAA/AA/A 48.07% 42.43%

BBB 48.31% 54.77%

BB 3.62% 2.80%
Weighted Average Maturity 3.3 2.8

Source: https://www.federalreserve.gov/publications/files/smccf-transition-specific-d
isclosures-6-28-20.xlsx

Table 1.9 presents the rating distributions of the SMCCF Broad Market Index published

on June 15, 2020, as well as the actual holdings of the SMCCF at the end of June 2020.

Overall, the actual holdings of the SMCCF match the published index quite well. The ac-

tual bonds holdings of the SMCCF tend to be slightly higher in credit quality and longer

43

https://www.federalreserve.gov/publications/files/smccf-transition-specific-disclosures-6-28-20.xlsx
https://www.federalreserve.gov/publications/files/smccf-transition-specific-disclosures-6-28-20.xlsx


in maturity, compared to the index.

In Table 1.10, we repeat our regressions in Table 1.3 but instead identify eligible issuers

using the published SMCCF Broad Market Index constituents. Again, we compare the

relative spread changes for eligible and ineligible issuer bonds on the key event dates of

March 23, 2020 and April 9, 2020. The results are similar as before, albeit smaller in mag-

nitude. Using issue ratings and remaining maturity fixed effects, the credit spreads of eli-

gible issuer bonds decreased 47 bps more than the credit spreads of ineligible issuer bonds,

on March 23, 2020. For bonds with less than five years maturity, on the other hand, the

credit spreads of eligible issuer bonds decreased 69 bps more than the credit spreads of in-

eligible issuer bonds on the same day. In contrast, on April 9, 2020, the credit spreads of

ineligible issuer bonds decreased 32 bps more than those of eligible issuer bonds for the full

sample, and 35 bps for bonds maturing in less than five years. All estimated coefficients

of interest are statistically significant at the one percent level. The lower magnitudes are

consistent with the findings by Flanagan and Purnanandam [2020] that the Fed did not se-

lect bonds that experienced the greatest decline in prices (increase in spreads), leading up

to the facility announcements, for inclusion in the SMCCF Broad Market Index. Addition-

ally, this proxy results in comparing SMCCF constituents, which are a subset of eligible

issuers, to a broader set of both eligible and ineligible issuers. Hence, using the SMCCF

Broad Market Index constituents to identify eligible issuers likely yields a conservative es-

timate of the program effect.
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Table 1.10: Change in G-Spreads (SMCCF Index Proxy for Eligibility)

(1) (2) (3) (4)
<5yrs Maturity <5yrs Maturity

Eligible (SMCCF Index) -1.22 -1.38 -0.47 -0.52
(1.50) (1.81) (0.29) (0.46)

March 23 12.85∗∗∗ 18.66∗∗∗ -30.55 -30.34
(4.41) (5.00) (29.90) (36.07)

April 9 -97.06∗∗∗ -111.39∗∗∗ -71.95∗∗∗ -82.43∗∗∗
(4.89) (5.60) (7.03) (8.08)

March 23 X Eligible (SMCCF Index) -56.25∗∗∗ -75.05∗∗∗ -47.01∗∗∗ -68.61∗∗∗
(4.21) (4.76) (10.35) (15.02)

April 9 X Eligible (SMCCF Index) 49.17∗∗∗ 54.03∗∗∗ 31.57∗∗∗ 35.03∗∗∗
(4.67) (5.30) (9.64) (11.94)

Constant 1.64 1.53 1.28 1.18
(2.05) (2.44) (0.79) (1.00)

Issue Ratings by Week F.E. N N Y Y
Remaining Maturity by Week F.E. N N Y Y
Observations 4.3e+05 2.1e+05 4.3e+05 2.1e+05
R2 0.00 0.00 0.12 0.12
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Similar to Table 1.3, this table reports the regression coefficients and standard errors (double-clustered by
issuer and time) for ∆Sijt = α+β1Eligiblei+β2Eventst+β3Eventst×Eligible (SMCCF Index)i+ θRating

jt +

θMaturity
jt + ϵjt. ∆Sijt is the change in G-spread of bond j at time t for issuer i, Eligible (SMCCF Index)i

is an indicator variable equal to one if issuer i was a member of the initial constituent list for the SMCCF
Broad Market Index, published on June 15, 2020, Eventst is an indicator variable equal to one if day t is an
event day, θRating

jt are fixed effects for bond j rating (i.e. Aaa, Aa1, etc.) by week, and θMaturity
jt are fixed

effects for bond remaining time-to-maturity (i.e. < 1 year, 1-2 years, 2-3 years, 3-4 years, 4-5 years, and
5+ years) by week. Columns (1) and (2) report the regression estimates without fixed effects. Columns (3)
and (4) report the estimates with fixed effects. Columns (1) and (3) show the results for the regression run
over the full sample of bonds, while columns (2) and (4) show the results for the sample of bonds with less
than five years maturity. The coefficient results broadly align with those reported in Table 1.3. However,
we do find that the magnitude of the coefficient estimates here are smaller than those in Table 1.3. This is
consistent with Flanagan and Purnanandam [2020], who find that that the Fed did not select eligible issuer
bonds which experienced the greatest decline (leading up to the facility announcements) for the SMCCF
Broad Market Index.
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1.7.2 Features

Variable Description
accrual Accruals/Average Assets
adv_sale Advertising Expenses/Sales
aftret_eq After-tax Return on Average Common Equity

aftret_equity After-tax Return on Total Stockholders Equity
aftret_invcapx After-tax Return on Invested Capital

at_turn Asset Turnover
capital_ratio Capitalization Ratio

cash_debt Cash Flow/Total Debt
cash_lt Cash Balance/Total Liabilities

cfm Cash Flow Margin
de_ratio Total Debt/Equity

debt_assets Total Debt (ltq)/Total Assets
debt_at Total Debt (dlcq+dlttq)/Total Assets

debt_capital Total Debt/Capital
debt_ebitda Total Debt/EBITDA
debt_invcap Long-term Debt/Invested Capital

equity_invcap Common Equity/Invested Capital
evm Enterprise Value Multiple
gpm Gross Profit Margin

gprof Gross Profit/Total Assets
lt_debt Long-term Debt/Total Liabilities
lt_ppent Total Liabilities/Total Tangible Assets

npm Net Profit Margin
opmad Operating Profit Margin After Depreciation
opmbd Operating Profit Margin Before Depreciation
pcf Price/Cash flow

pe_exi P/E (Diluted, Excl. EI)
pe_inc P/E (Diluted, Incl. EI)

pe_op_basic Price/Operating Earnings (Basic, Excl. EI)
pe_op_dil Price/Operating Earnings (Diluted, Excl. EI)

ps Price/Sales
ptpm Pre-tax Profit Margin

rd_sale Research and Development/Sales
roa Return on Assets
roce Return on Capital Employed

staff_sale Labor Expenses/Sales
totdebt_invcap Total Debt/Invested Capital

Table 1.11: Features with Less than One Percent Missing Observations
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Variable Description
bm Book/Market

capei Shillers Cyclically Adjusted P/E Ratio
cash_ratio Cash Ratio
curr_debt Current Liabilities/Total Liabilities
curr_ratio Current Ratio
dltt_be Long-term Debt/Book Equity
int_debt Interest/Average Long-term Debt
intcov After-tax Interest Coverage

intcov_ratio Interest Coverage Ratio
ocf_lct Operating CF/Current Liabilities
pay_turn Payables Turnover

peg_1yrforward Forward P/E to 1-year Growth (PEG) ratio
pretret_earnat Pre-tax Return on Total Earning Assets
pretret_noa Pre-tax return on Net Operating Assets
profit_lct Profit Before Depreciation/Current Liabilities

ptb Price/Book
quick_ratio Quick Ratio (Acid Test)
rect_act Receivables/Current Assets
rect_turn Receivables Turnover

roe Return on Equity
sale_equity Sales/Stockholders Equity
sale_invcap Sales/Invested Capital
short_debt Short-Term Debt/Total Debt

Table 1.12: Additional Features with Less than Ten Percent Missing Observations
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1.7.3 Deep Net Architectures

Feature History (Years)
1 5 10

Number of Features 333 1342 3204
Hidden Layer Architecture [300, 150, 75, [1500, 750, 375, [2700, 1350, 675, 300,

35, 15] 150, 75, 35, 15] 150, 75, 35, 15]
Dropout Rate 20%

Table 1.13: Architecture for Deep Nets with 1% Tolerance for Missing Observations

Feature History (Years)
1 5 10

Number of Features 517 2502 5314
Hidden Layer Architecture [500, 300, 150, [3000, 1500, 750, 375, [5000, 2700, 1350, 675,

75, 35, 15] 150, 75, 35, 15] 300, 150, 75, 35, 15]
Dropout Rate 20%

Table 1.14: Architecture for Deep Nets with 10% Tolerance for Missing Observations
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1.7.4 Causal ML Treatment Effect Estimates Across Models

Table 1.15: Treatment Effects Estimates for March 23, 2020

Change in G-Spreads
Treatment Effect Estimates Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Rating (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
B-to-BB -858.71 -493.19 -498.99*** -562.61*** -552.89*** -464.24***

(800.61) (370.08) (148.55) (136.17) (144.14) (128.15)
BBB -122.03 -131.65** -80.08*** -64.82*** -79.80*** -79.39***

(109.11) (59.73) (15.99) (15.32) (15.05) (14.40)
A -53.78 -81.73*** -73.13*** -49.51*** -58.30*** -57.55***

(39.43) (10.68) (5.55) (5.34) (5.44) (5.79)
AA -61.12*** -59.86*** -45.51*** -23.93* -35.33** -36.80***

(13.26) (13.40) (14.15) (14.05) (14.17) (14.22)
AAA -64.61*** -56.35*** -46.26*** -31.07** -40.06*** -39.14***

(11.28) (11.54) (12.36) (12.23) (12.60) (13.13)
ATET (DiD) -139.93 -157.32*** -99.66*** -115.33*** -120.81*** -107.68***

(117.15) (60.95) (23.40) (20.92) (20.20) (19.68)
ATE -199.05 -160.15** -126.67*** -123.58*** -134.88*** -130.75***

(130.17) (71.19) (24.34) (21.57) (21.27) (19.40)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the treatment effects for the change in spreads for different model specifications, with the
results corresponding to the benchmark specification of 10 years of features history with 1% missingness
tolerance plotted in Figure 1.4. The deep net architectures for the potential outcomes and propensity score
models are reported in Tables 2.12 and 2.13. The list of features with 1% and 10% missingness tolerance
are reported in Tables 2.12 and 2.13, respectively. Additionally, indicator variables for two-digit NAICS
industry classification are included. The coefficient estimates for the analogous DiD estimator for ATET are
broadly in-line with those obtained from the DiD panel regressions without fixed effects, reported in column
(1) in Table 1.3. The estimates for the ATE are greater than the ATET estimates, reflecting the higher
counterfactual treatment effects for ineligible issuers. We generally find a monotonic relationship between
the GATE and credit rating, with the GATE decreasing, implying a greater effect on spreads, as credit
ratings deteriorates, in-line with expectations [Brunnermeier and Krishnamurthy, 2020]. The exception to
this pattern may be the higher magnitude of the GATE for AAA-rated issuers versus AA-rated issuers.
This is consistent with the finding that investors’ demand for liquidity led to a sell-off in the highest rated
securities at the onset of the pandemic [Haddad, Moreira, and Muir, 2021, He, Nagel, and Song, 2022, Ma,
Xiao, and Zeng, 2022].
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CHAPTER 2

HETEROGENEOUS TREATMENT EFFECTS AND

COUNTERFACTUAL POLICY TARGETING USING DEEP

NEURAL NETWORKS: AN APPLICATION TO CENTRAL

BANK CORPORATE CREDIT FACILITIES

2.1 Introduction

In announcing, and later expanding, the Corporate Credit Facilities (CCFs) in early 2020,

the Federal Reserve references its dual-mandate to promote maximum employment and

stable prices.1 Through purchases of corporate bonds in the primary and secondary mar-

ket, as well as exchange-traded funds (ETFs), the CCFs were intended to support credit to

firms and business activity, despite the shock created by the COVID-19 pandemic.

While the CCFs could provide up to $750 billion in financing, actual purchases totaled

just $14.1 billion at 2020 year-end. However, markets priced in significant contingent sup-

port by the Fed, especially if conditions were to deteriorate and tail risks materialized

[Haddad, Moreira, and Muir, 2025]. Consequently, the bulk of the financial market effect

of the CCFs were realized around its announcement, with a significant decline in bond

spreads.2 Record bond issuance followed,3 as did equity issuance, particularly for more

1. https://www.federalreserve.gov/newsevents/pressreleases/monetary20200323b.htm,

https://www.federalreserve.gov/newsevents/pressreleases/monetary20200409a.htm

2. See Boyarchenko, Kovner, and Shachar [2022], D’Amico, Kurakula, and Lee [2020], Flanagan and

Purnanandam [2020], Gilchrist et al. [2021], Haddad, Moreira, and Muir [2021], Kargar et al. [2021],

Momin and Li [2025], O’Hara and Zhou [2021].

3. See Becker and Benmelech [2021], Boyarchenko, Kovner, and Shachar [2022], Darmouni and Siani

[2024], Dutordoir et al. [2024], Halling, Yu, and Zechner [2020], Hotchkiss, Nini, and Smith [2022]

50

https://www.federalreserve.gov/newsevents/pressreleases/monetary20200323b.htm
https://www.federalreserve.gov/newsevents/pressreleases/monetary20200409a.htm


financially constrained firms.4 Firms used the proceeds to satisfy their demand for cash,5

paying back heavily utilized credit lines drawn on prior to the intervention.6 Research on

the implementation of corporate bond purchase program in Europe by the European Cen-

tral Bank (ECB), operational since 2016, found decreases in financing costs for firms eligi-

ble for the program which translated into higher bond issuance and payouts to sharehold-

ers but not investment.7 Was this also the case for the Fed CCF intervention during the

pandemic?

There is very good reason to believe the CCFs should have supported investment by

reducing financial constraints. Surveys of Chief Financial Offers (CFOs) by Barry et al.

[2022] during the pandemic suggest that improving financial flexibility would improve hir-

ing and capital spending. This echoes the CFO survey results of Campello, Graham, and

Harvey [2010] during the Great Financial Crisis (GFC), where the vast majority of CFOs

stated that financial constraints restricted investments in attractive projects. Firms do

seem to have prioritized financial flexibility at the onset of the pandemic by initially cut-

ting payouts.8 Were these actions taken to both preserve cash and support operations?

Becker and Benmelech [2021] and Darmouni and Siani [2024] find firms do not increase

investment, but does this hold on a relative basis for firms targeted by the CCFs versus

those that are not? How about after accounting for the heterogeneous reactions of firms?9

4. See Dutordoir et al. [2024], Halling, Yu, and Zechner [2020], Hotchkiss, Nini, and Smith [2022].

5. See Acharya and Steffen [2020], Darmouni and Siani [2024], Pettenuzzo, Sabbatucci, and Timmer-

mann [2023]

6. See: Acharya and Steffen [2020], Darmouni and Siani [2024], Greenwald, Krainer, and Paul [2023].

7. See Abidi and Miquel-Flores [2018], Grosse-Rueschkamp, Steffen, and Streitz [2019], Todorov [2020].

8. See Ali [2022], Cejnek, Randl, and Zechner [2021], Gormsen and Koijen [2020], Krieger, Mauck, and

Pruitt [2021], Pettenuzzo, Sabbatucci, and Timmermann [2023].

9. See Darmouni and Siani [2024], Greenwald, Krainer, and Paul [2023], Haque and Varghese [2021],

Hassan et al. [2023], Pagano and Zechner [2022].

51



And is this still true in the years following the pandemic, as the shock fades, and invest-

ment opportunities improve?

To answer these questions, I introduce a novel two-step semi-parameteric difference-in-

differences (DiD) estimator to compute dynamic (heterogeneous) treatment effects from

the onset of the pandemic in 2020 through 2023. To achieve identification, I use an ex-

tremely high-dimensional set of controls, allowing for rich, potentially, non-linear interac-

tions. The number of controls far exceeds the number of observations used in estimation,

thus requiring tools from the double/debiased machine learning (DML) and causal ma-

chine learning literature to perform proper inference. This is accomplished by using an

influence function (IF) estimator, alternatively called a Neyman orthogonal score function.

The first step requires estimating the non-parametric terms in the structural equation

for the potential outcomes model which specifies the treatment effect. The structural equa-

tion for potential outcomes is the linear combination of a non-parametric intercept term

and the interaction of a treatment indicator (eligibity for the CCFs) and a non-parametric

slope term. The slope term captures individual level heterogeneity, that is, conditional av-

erage treatment effects (CATEs). Another ingredient for the estimator is an estimation of

propensity scores, the probability of a firm being classified as eligible for the CCFs, which

is also modeled as a non-parametric function of a high-dimensional set of characteristics.

The non-parametric terms are estimated using deep feed-forward neural networks. Deep

nets are used because ability to approximate continuous functions of real variables arbi-

trarily well, showing exceptional performance in this regard [Chronopoulos et al., 2023].

Farrell, Liang, and Misra [2021b] provides the theoretical justification for using deep nets

to estimate non-parametric terms in the first step of two-step semi-parametric estimation

and inference. The expression for the two-step semi-parametric DiD estimator is derived

from the general expressions for IF estimators given in Farrell, Liang, and Misra [2021a].

Identification of average treatment effects (ATEs) requires that the assumptions of un-
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confoundedness and overlap are satisfied. I defend the assumption of unconfoundedness

by appealing to the extremely large set of covariates used in the estimation of the non-

parametric terms, along with the usage of deep nets allows for the estimation of rich inter-

actions and potential non-linearities. The covariate set consists of the quarterly histories

of 37 to 60 pre-treatment variables going back up to 10 years, along with indicator vari-

ables for industry classification. However, I note that at the cost of identifying the average

treatment effect on the treated (ATET), instead of the ATE, given the DiD nature of the

estimator, I can use the weaker assumptions of conditional no anticipation and parallel

trends, instead of unconfoundedness. This requires that, conditional on the pre-treatment

variables, firms did not anticipate the CCFs in 2019 and that comparable firms would

have exhibited similar dynamics, absent intervention. A general lack of pre-trends in event

study regressions suggests that conditional parallel trends is a justifiable assumption, and

estimates of the ATE and ATET are not statistically different from zero. Overlap is justi-

fied by the slow-moving nature of credit ratings, which determined firm eligibility for the

CCFs, and the significant overlap in the distributions of fundamental characteristics and

market-based measures of risk (CDS spreads) across eligible and ineligible firms.

I compare the dynamic (heterogeneous) treatment effects from the novel estimator to

static (homogeneous) treatment effects from a DiD panel regression and dynamic (homoge-

neous) treatment effects from an event study design with two-way fixed effects. The mag-

nitudes of the point estimates and standard errors are similar. The results show that while

all firms increased leverage and cash holdings as a proportion of 2019 year-end assets,

firms eligible for the CCFs increased leverage and cash to a relatively lower extent than in-

eligible firms. Both the static (homogeneous) treatment effects and the dynamic (heteroge-

neous) treatment effects indicate that eligible firms do not show show an increased invest-

ment response over the treatment horizon, thus suggesting that the CCFs may not have

met its objective for producing real effects. These results are robust to alternative proxies
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for investment. I argue in preference for the result from the two-step semi-parametric esti-

mator, since the high-dimensional set of controls can better control for potential selection

bias and account for heterogeneity. In contrast, all models general indicate that eligible

firms did increase payouts to shareholders, at least on a relative basis, with the two-step

semi-parametric estimator showing that this was apparent even in 2020.

Since an intermediary step to computing ATEs using the two-step semi-parametric esti-

mator is to compute the distribution of CATEs, I can study the effects of counterfactual

policy targeting schemes, particularly to see if investment can be improve. This is also

identified if the unconfoundedness assumption and overlap condition holds. Although,

without the unconfoundedness assumption, the estimator is still valid and recovers the

predictive effects of alternative policy targeting schemes, which is still important for pol-

icy diagnostics. The CFO survey evidence of Campello, Graham, and Harvey [2010] and

Barry et al. [2022] suggests that targeting weaker, more financially constrained credits

may produce stronger real effects. This is also echoed in the simple theoretical setup of

Brunnermeier and Krishnamurthy [2020]. Momin and Li [2025] finds that extending di-

rect cash bond support from the CCFs to ineligible firms would have led to around 500

bps of spread tightening. However, in this paper, I find that extending eligibility suggests

weak to inconclusive evidence of improving investment outcomes in 2020, while showing no

evidence of improved outcomes for later years. In contrast, the counterfactual treatment

effect estimates suggest that ineligible firms, had they received direct cash bond support

from the CCFs, would have increased leverage in 2020 and payouts in 2020 and 2022.

This paper contributes to several literatures. First, it contributes to the extensive litera-

ture on the financial and real dynamics of firms during the COVID-19 pandemic that was

earlier cited. Among these, the paper closest to this one is that of Darmouni and Siani

[2024]. They also show that firms drastically increased bond issuance following the an-

nouncement of the Fed CCFs and that the proceeds from these were used to pay down
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previously drawn credit lines and build cash buffers. They find that firms maintained eq-

uity payouts but did not increase investment. While I echo most of their findings, I utilize

a different identification strategy that involves inferring treatment effects from comparing

the relative dynamics of eligible firms versus ineligible firms using high-dimensional con-

trols in a non-linear setting, rather than an instrumental variable (IV) approach as was

used in their approach. One

Additionally, to the best of my knowledge, I am the first to study the counterfactual ef-

fects of the Fed CCFs from counterfactual policy targeting.

Second, this paper contributes to the DML and CML literature. The canonical refer-

ences to using DML for estimation and inference are Belloni, Chernozhukov, and Hansen

[2014] and Chernozhukov et al. [2018].10 The DML literature commonly uses a partially

linear model for specifying the structural potential outcomes model where the intercept

term is referred to as an infinite-dimensional nuisance parameter and the slope term is the

product of a constant, homogeneous treatment effect and a treatment indicator. Farrell,

Liang, and Misra [2021a] provides the general expression for the IF estimator for smooth

structural models. From this I derive a two-step semi-parametric DiD estimator with non-

parametric, heterogeneous CATEs and show that the dynamic (heterogeneous) treatment

effects estimated from this estimator is similar to the static (homogeneous) treatment

effect estimated from a panel DiD regression and to the dynamic (homogeneous) treat-

ment effects estimated from event study regressions with two-way fixed effects. This es-

timator has a similar functional form and is analogous to the doubly-robust DiD estima-

tor of Sant’Anna and Zhao [2020] in the non-ML context and the DML DiD estimator of

Chang [2020]. While the derivation of the estimator that I utilize in this paper is straight-

forward, to the best of my knowledge, I am the first to present this, at least in the context

of an application in finance.

10. See also the textbook Chernozhukov et al. [2024].
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Third, this paper contributions to the finance and accounting literatures featuring ap-

plications of DML and two-step semi-parameteric estimators, more generally. The ma-

jority of these papers utilize DML for model selection and inference in high-dimensional

settings. Among empirical asset pricing papers, specifically, on factor models for explain-

ing the cross-section of stock returns, Feng, Giglio, and Xiu [2020] is the first to use DML

to assess new factors given control factors from the factor zoo. Maasoumi et al. [2024]

proposes a DML-based method to identify factors with the most significant explanatory

power for explaining the cross-section of stock returns, rather than just evaluating new

factors as in Feng, Giglio, and Xiu [2020]. Borri et al. [2024] uses DML to compare their

proposed novel, nonlinear asset pricing factor for explaining the cross-section of equity re-

turns against the factor zoo, finding that their proposed factor significant while the ma-

jority of factor zoo is not. Other empirical asset pricing applications include Hansen and

Siggaard [2024], who uses DML to revisit explanations of the post-earnings announcement

drift (PEAD), and Gomez-Gonzalez, Uribe, and Valencia [2024], who employs DML to

study the effect of economic complexity index on sovereign yield spreads, considering a

large number of explanatory variables.

There are also numerous accounting and corporate finance applications of DML. Bilgin

[2023] studies the significance of cash holdings, current ratio, and non-debt tax shield in

determining firms’ capital structure in the face of high-dimensional controls. De Marco

and Limodio [2022] uses DML to understand which characteristics among a high dimen-

sional set contributes the most to bank climate resilience. Movaghari, Tsoukas, and Vagenas-

Nanos [2024] studies the determinants of cash holdings. Wasserbacher and Spindler [2024]

studies the heterogeneous effects causal effect of ratings on the leverage ratio, also tak-

ing into consideration high dimensional controls. Finally, Yang, Chuang, and Kuan [2020]

studies the ‘Big N’ audit quality effect.

Papers specifically using the two-step semi-parameteric estimation/inference methodol-
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ogy of Farrell, Liang, and Misra [2021b] and Farrell, Liang, and Misra [2021a], along with

deep nets to estimate non-parameteric terms, include Kim and Nikolaev [2024a] and Kim

and Nikolaev [2024b]. Kim and Nikolaev [2024a] uses the approach of Farrell, Liang, and

Misra [2021a] to specify a semi-parameteric function that allows for interactions between

numerical and narrative data to forecast operating profitability. Similarly, Kim and Niko-

laev [2024b] studies the narrative context provided by disclosures around the release of

numeric information to understand the effect of contextual information on earnings persis-

tence, combining textual and numeric data via deep nets to uncover heterogeneous effects.

In a spirit similar to Farrell, Liang, and Misra [2021a], Simon, Weibels, and Zimmermann

[2022] embeds a structural model of portfolio allocation in a deep net via the loss function

used to train the deep net and learn the parameters for portfolio weights.

While my application also utilizes the methods from this literature for model selection

and inference in high-dimensional settings, and to infer heterogeneous effects, in the con-

text of estimating non-parameteric terms using deep nets, I also compute counterfactual

treatment effects for policy evaluation. To the best of my knowledge, this is the first such

application of its kind in the finance and accounting literatures.

The rest of the paper is organized as follows. Section 2.2 provides the institutional back-

ground of the Fed CCFs. Section 2.3 describes the data and presents the descriptive statis-

tics for eligible and ineligible firm variables. Section 2.4 presents the static (homogeneous)

treatment effects obtained from a panel DiD regression. Section 2.5 presents the dynamic

(homogeneous) treatment effects obtained from event study regressions with two-way fixed

effects. Section 2.6 presents the dynamic (heterogeneous) treatment effects obtained from

the two-step semi-parameteric DiD estimators. Section 2.7 presents the results from coun-

terfactual policy targeting experiments. Section 2.8 concludes.
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2.2 Institutional Background

The Federal Reserve initially announced the Primary Market Corporate Credit Facility

(PMCCF) and the Secondary Market Corporate Facility (SMCCF) on March 23, 2020.11

Both facilities were established with a liquidity backstop provided by the Treasury. Ini-

tially, the CCFs, along with the Term Asset-Backed Securities Loan Facility (TALF), had

the potential to provide up to $300 billion in financing.12

Eligibility for the CCFs was determined at the issuer level with eligible issuers needing

to be American companies with headquarters and material operations domestically. Ad-

ditionally, eligible issuers needed to be rated investment-grade (IG). In the case issuers

had multiple ratings, the plurality of these ratings were required to be IG. Depository in-

stitutions and depository holding companies were excluded from eligibility. Moreover, the

SMCCF also targeted IG ETFs.

On April 9, 2020, the Federal Reserve increased the size of the facilities, such that the

CCFs could provide up to $750 billion in financing.13 Additionally, the eligibility criteria

of the facilities were amended such that issuers meeting the rating criteria as of March 22,

2020 were deemed eligible for the facilities. Effectively, this meant that issuers (‘Fallen An-

gels’) downgraded out of eligibility between the initial and subsequent announcement dates

had their eligibility restored. The term sheet of the SMCCF was also amended to expand

eligible ETFs to include high-yield (HY) ETFs.

The Federal Reserve began the purchases of ETFs on May 12, 202014 and of secondary

market cash bonds according to a “broad, diversified market index” on June 15, 2020.15

11. https://www.federalreserve.gov/newsevents/pressreleases/monetary20200323b.htm

12. https://home.treasury.gov/news/press-releases/sm951

13. https://www.federalreserve.gov/newsevents/pressreleases/monetary20200409a.htm

14. https://www.newyorkfed.org/newsevents/news/markets/2020/20200511

15. https://www.federalreserve.gov/newsevents/pressreleases/monetary20200615a.htm

58

https://www.federalreserve.gov/newsevents/pressreleases/monetary20200323b.htm
https://home.treasury.gov/news/press-releases/sm951
https://www.federalreserve.gov/newsevents/pressreleases/monetary20200409a.htm
https://www.newyorkfed.org/newsevents/news/markets/2020/20200511
https://www.federalreserve.gov/newsevents/pressreleases/monetary20200615a.htm


Participation in the SMCCF initially required corporate issuers certify compliance with

the eligibility criteria.16 The SMCCF continued purchases until December 31, 2020, fin-

ishing with a total portfolio of $14.1 billion, while the PMCFF was not utilized.17 The

SMCCF began winding down its ETF holdings on June 7, 2021 and corporate bond hold-

ings on July 12, 2021, completing the divestitures by August 31, 2021.18 Equity capital

was returned to the Treasury and the facilities were terminated by the end of 2021. For in-

formation on the full range of public sector interventions undertaken in the United States

during the pandemic, see Clarida, Duygan-Bump, and Scotti [2021].

2.3 Data

2.3.1 Sample Construction

Firm fundamental characteristics are obtained from Compustat North America via Whar-

ton WRDS and the Financial Ratios Suite by WRDS. Firms incorporated outside of the

United States are dropped, as are firms with two-digit NAICS code 52, which corresponds

to the Finance and Insurance industry. This drops firms outside the eligibility criteria for

CCF cash bond purchases. Additionally, CDS spread data for five-year senior unsecured

debt is obtained from IHS Markit through WRDS. Eligibility criteria is determined using

issue ratings corresponding to senior unsecured debt (which correspond to issuer ratings),

obtained from Mergent Fixed Income Securities Database (FISD) via Wharton WRDs.

16. https://www.newyorkfed.org/markets/primary-and-secondary-market-faq/archive/corpora

te-credit-facility-faq-201204

17. https://newbagehot.yale.edu/docs/united-states-primary-market-corporate-credit-facil

ity-and-secondary-market-corporate-credit

18. https://www.newyorkfed.org/markets/secondary-market-corporate-credit-facility
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2.3.2 Descriptive Statistics

Table 2.1: Descriptive Statistics - Eligible

Median Mean Standard Deviation Observations
Common Equity at Market Value (Millions) 22,421.93 58,526.71 122,246.57 321
Total Debt (Millions) 5,718.30 13,352.45 22,580.30 358
Total Assets (Millions) 17,642.35 39,488.83 73,815.12 358
Employees (Thousands) 16.30 56.42 146.44 345
Book Leverage (Percent) 49.03 49.86 17.21 345
Market Leverage (Percent) 21.84 24.00 13.64 321
Sales (Millions) 8,980.15 25,430.24 51,988.78 358
EBITDA (Millions) 2,211.30 5,106.62 10,418.35 340
EBITDA Interest Coverage 9.44 13.77 17.03 338
Debt-to-EBITDA 2.87 3.17 1.82 340

The table shows accounting and financial information for publicly traded firms who are identified to be
eligible for direct cash bond purchases under the Fed CCFs based on their ratings. The data corresponds
to fiscal year 2019. Compared to ineligible firms, eligible firms are far larger as measured by market equity,
total assets, employee headcount, and sales. Moreover, they have stronger liquidity and solvency indicators.

Table 2.2: Descriptive Statistics - Ineligible

Median Mean Standard Deviation Observations
Common Equity at Market Value (Millions) 2,075.07 5,054.11 10,387.18 460
Total Debt (Millions) 1,043.55 2,532.42 4,979.49 464
Total Assets (Millions) 2,502.09 5,584.92 10,617.85 465
Employees (Thousands) 3.63 10.82 22.73 458
Book Leverage (Percent) 52.47 53.71 20.14 412
Market Leverage (Percent) 33.16 37.43 23.93 459
Sales (Millions) 1,667.11 3,556.65 6,182.18 462
EBITDA (Millions) 228.18 488.68 1,182.23 461
EBITDA Interest Coverage 3.86 3.89 16.70 452
Debt-to-EBITDA 3.65 3.92 25.65 460

The table shows accounting and financial information for publicly traded firms who are identified to be
ineligible for direct cash bond purchases under the Fed CCFs based on their ratings. The data corresponds
to fiscal year 2019. Compared to eligible firms, ineligible firms are far smaller as measured by market equity,
total assets, employee headcount, and sales. Moreover, they have weaker liquidity and solvency indicators.

Tables 2.1 and 2.2 report key fundamental characteristics and financial indicators for pub-

lic eligible and ineligible traded firms, respectively, for the 2019 fiscal year. There are more

eligible firms than ineligible firms, but the counts for each are sizeable. In general, eligi-

ble issuers are larger, more solvent, and more liquid. The larger size of eligible firms are

reflected in far larger equity valuations, higher debt levels, greater asset holdings, more

sales, and higher EBITDA. While eligible firms have more employees, the gap here is much
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Figure 2.1: Eligible Issuers are Larger, with More Substantial Cash Flows

The figure shows the distributions of the logged values of several size and performance indicators across eligi-
ble and ineligible issuers of the Fed CCFs. Eligible issuers have more assets and higher employee headcounts.
Additionally, they generate higher revenue and register higher EBITDA.
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Figure 2.2: Eligible Issuers are also More Liquid with Lower Leverage

The figure shows the distributions of the logged values of several solvency and liquidity indicators across
eligible and ineligible issuers of the Fed CCFs. While both sets of issuers have comparable distributions
of book leverage, eligible issuers have far lower levels of market leverage (as measured with respect to firm
market value). Additionally, eligible issuers have greater cash flow coverage of debt and debt servicing costs.
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smaller compared to ineligible firms. Ineligible firms are less solvent as reflected in higher

book and market leverage and larger five-year senior unsecured CDS spreads. The lower

liquidity of ineligible firms are reflected in lower EBITDA interest coverage, debt-to-EBITDA,

and profit margin. These trends are reinforced in the distributions of size and performance

indicators in Figure 2.1, and of solvency and liquidity indicators in Figure 2.2.

Figure 2.3: CDS Spreads Consistent with Higher Default Risk of Ineligible Firms

The figure shows the distributions of logged CDS spreads on March 20, 2020 prior to the Fed CCF an-
nouncement date on March 23, 2020, across eligible and ineligible firms. Consistent with the fundamental
characteristics shown in Figures 2.1 and 2.2 and Tables 2.1 and 2.2, the market assessed ineligible firms to
be riskier than eligible firms. However, there is a significant area of overlap between the two sets of firms.

Figure 2.3 graphs the distribution of log CDS spreads on March 20, 2020, the last busi-

ness day before the CCF announcement on March 23, 2020, for both eligible and ineligible

firms. Firms with CDS spreads are a subset of all firms with public financials. The figure

reinforces the information presented in the tables, but also reveals that eligible firms are

not uniformly perceived to have lower default risk than ineligible firms. Notably, there is

a significant overlap in the supports of the two distributions, with the support of eligible

firms’ CDS spread distribution almost entirely lying within the corresponding support for

ineligible firms.
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2.4 Static Homogeneous Average Treatment Effects:

Difference-in-Differences Regressions

Static (homogeneous) treatment effects are estimated using a difference-in-differences (DiD)

regression. The specification is:

yi,t = β0 + β1Eligiblei + β2Postt + β3(Eligiblei × Postt) + γi + ϵi,t (2.1)

where yi,t is the outcome variable of interest, Eligiblei is an indicator variable with value

1 if firm i was eligible for cash bond purchases under the CCFs, Postt is an indicator vari-

able equal to 1 if date t is 2020 or later, and γ are two-digit NAICS industry fixed effects.

The static treatment effect is given by β3. The DiD regressions are computed over 2017 to

2023. Standard errors are clustered by issuer and date.

2.4.1 Potential Selection Bias and Parallel Trends

For both the DiD panel regression in this section, and the event study design in Section

2.5, a key concern may be potential selection bias contaminating the estimated treatment

effect, in addition to any biases attributable to ignoring heterogeneity. An obvious source

of this selection bias may arise from the fact that eligibility for the CCFs is essentially a

proxy for IG status.

Consequently, the treatment variable may simply be capturing the differing dynamics

between IG and HY firms. Section 2.6 tackles this issue more seriously by using a large set

of controls as well as permitting arbitrary interactions between these controls, motivated

by Section 2.3.2 showing considerable overlap in the distributions of eligible and ineligi-

ble firms along fundamentals and market-based measures of risk. Nonetheless, the general

lack of pre-trends observed in the event study regressions in Section 2.5 suggests that the

parallel trends assumption can be justified and hence, the DiD regressions in this section
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identify the ATET. Section 2.6.6 includes further discussion about selection bias.

2.4.2 Results

Table 2.3: Debt Levels and Cash Holdings Broadly Increased, With Negative Treatment
Effect for Eligible Firms

Dependent Variables: Cash (% 2019Q4 Assets) Total Debt (% 2019Q4 Assets)
Model: (1) (2) (3) (4)

Variables
Constant 10.01∗∗∗ 36.37∗∗∗

(0.9476) (2.943)
Eligible (Fed CCFs) -4.477∗∗∗ -3.120∗∗∗ -10.54∗∗∗ -12.49∗∗∗

(0.9565) (1.009) (1.969) (2.010)
Post 2020 9.866∗∗∗ 9.903∗∗∗ 23.16∗∗∗ 23.17∗∗∗

(2.015) (2.005) (4.075) (4.082)
Eligible (Fed CCFs) × Post 2020 -7.295∗∗∗ -7.464∗∗∗ -6.141∗∗ -6.212∗∗

(2.042) (2.046) (2.733) (2.729)

Fixed-effects
NAICS (2-Digit) Yes Yes

Fit statistics
Observations 9,912 9,912 9,502 9,502
R2 0.03349 0.07229 0.07234 0.10256
Within R2 0.02740 0.07712

Clustered (Issuer & Date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the regression results from Equation 2.1 for cash holdings (% 2019Q4 assets) and total
debt (% 2019Q4 assets). The results suggest that firms broadly increased leverage while increasing cash
holdings in the treatment period (2020 onward). Additionally, the regressions pick up negative treatment
effects for eligible firms for both variables, suggesting that these firms increased cash holdings and debt to a
lesser extent than ineligible firms.

Table 2.3 reports the DiD regression results for cash holdings (% 2019Q4 assets) and

total debt (% 2019Q4 assets). Columns (1) and (3) show results without industry fixed-

effects, while Columns (2) and (4) include industry fixed effects, but the results are broadly

consistent across the different specifications. The DiD regressions suggest that eligible

firms generally hold less cash and have less debt than ineligible firms. Furthermore, the
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regressions suggest that firms broadly increased cash holdings and leverage in the treat-

ment period (2020 onward). This result can be seen by the positive coefficient on the ‘Post

2020’ variable for ineligible firms and the sum of the coefficients for ‘Post 2020’ and ‘Eli-

gible (Fed CCFs) × Post 2020’ for eligible firms. Interestingly, negative treatment effects

are picked up on eligible firms’ relative cash holdings and total debt. Hence, while eligible

firms increased cash holdings and leverage in the treatment period, they appear to have

done so proportionally less than ineligible firms.

Table 2.4: Eligible Firms’ Payout Shows Positive Effect; No Effect Seen for Investment

Dependent Variables: Dividends and Buybacks (% 2019Q4 Assets) Capital Expenditures and R&D (% 2019Q4 Assets)
Model: (1) (2) (3) (4)

Variables
Constant 1.062∗∗∗ 2.456∗∗∗

(0.2192) (0.2956)
Eligible (Fed CCFs) 0.9875∗∗∗ 0.8328∗∗∗ -1.217∗∗∗ -1.150∗∗∗

(0.2433) (0.2519) (0.3103) (0.3168)
Post 2020 -0.1769 -0.1554 1.240∗ 1.305∗

(0.2470) (0.2473) (0.6771) (0.6843)
Eligible (Fed CCFs) × Post 2020 1.180∗∗∗ 1.158∗∗∗ -0.8407 -0.9016

(0.2377) (0.2345) (0.6597) (0.6642)

Fixed-effects
NAICS (2-Digit) Yes Yes

Fit statistics
Observations 9,641 9,641 9,798 9,798
R2 0.00907 0.01695 0.00988 0.03614
Within R2 0.00657 0.00882

Clustered (Issuer & Date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the DiD regression results for payouts (% 2019Q4 assets),investment (% 2019Q4 assets),
and capital expenditure (% 2019Q4 assets). Payouts are computed as the annual sum of dividends and share
buybacks. Investment is proxied as the annual change in the gross value of Property, Plant, and Equipment.
The results show a positive effect for firm payouts over the treatment period, while both investment and
capital expenditure exhibit null effects, despite the general increases in cash holdings and leverage shown in
Table 2.3.

Table 2.4 reports the DiD regression results for for payouts (% 2019Q4 assets) and in-

vestment (% 2019Q4 assets). Payouts are computed as the annual sum of dividends and

share buybacks. Investment is proxied as the annual change in the gross value of property,

plant, and equipment.19 The results show a positive effect for firm payouts over the treat-

19. In contrast, when investment is proxied by the annual change in the gross value of property, plant,
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ment period, while investment exhibit nulls effects. Together, Tables 2.3 and 2.4 suggest

that while firms generally increased leverage and cash in the treatment period, this trans-

lated into higher payouts by eligible firms but not investment.

2.5 Dynamic Homogeneous Average Treatment Effects: Event

Study Regressions with Two-Way Fixed Effects

To study the dynamic impact of the CCF intervention, I employ event study regressions

with two-way fixed effects. These have the functional form:

yi,t =
−2∑

τ=−3

βτD
τ
t Eligiblei +

3∑
τ=0

βτD
τ
t Eligiblei + γi + ζt + ϵi,t (2.2)

where yi,t is the outcome variable of interest, Dτ = 1{t−2020 = τ} is an indicator variable

equal to 1 if the difference between the year t and 2020 is equal to τ , Eligible is an indica-

tor variable with value 1 if the firm was eligible for direct cash bond purchases under the

CCFs, 0 otherwise, and finally, βτ are the coefficients being estimated. Two-way unit and

time fixed effects are given by γi for issuer and ζt for year, respectively. The event study

regressions are computed over the window 2017 to 2023. Standard errors are clustered by

issuer and year.

Consequently, βτ for τ ≥ 0 are dynamic treatment effects, while for τ < 0, βτ corre-

sponds to a placebo or falsification test. However, notice that τ = −1, t = 2019 is omitted

from the regression specification; this is the baseline comparison group, which will also be

the case for the two-step semi-parametric DiD estimator introduced in Section 2.6. Ad-

ditionally, as discussed in Section 2.4, the estimation of treatment effects may suffer from

and equipment, a positive coefficient is estimated for the eligible indicator, while the coefficient on the

interaction term is negative. The causal ML results for the property, plant, and equipment investment

proxy is discussed further in Section 2.6 and reported in Appendix 2.9.11.
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potential selection bias and neglect of heterogeneity, which further motivates the method

used in Section 2.6. Nonetheless, there generally appears to be a lack of pre-trends, which

suggests that the parallel trends assumption holds for the treatment period.

Figure 2.4: Eligible Firm Cash Holdings Show Relative Decline, Before Reverting

The figure plots the dynamic treatment effects from the regression given by Equation 2.2 for cash as propor-
tion of 2019Q4 assets. The coefficient estimates prior to 2020 are null or positive, suggesting that either there
are not meaningful differences in relative cash holdings between eligible and ineligible firms or that eligible
firms hold more cash. However, after the onset of the pandemic, the dynamic treatment effects are negative,
reaching a bottom in 2021 before reverting. This suggests that ineligible firms increased cash balances to a
greater extent than eligible firms.

Figure 2.4 shows the dynamic effects of the CCF intervention on firm cash balances as a

proportion of total assets as of 2019Q4. The coefficient estimates prior to 2020 are null or

positive, suggesting that either there are not meaningful differences in relative cash hold-

ings between eligible and ineligible firms or that eligible firms hold more cash. However,

after the onset of the pandemic, the dynamic treatment effects are negative, reaching a

bottom in 2021 before reverting. This suggests that ineligible firms increased cash balances

to a greater extent than eligible firms.

Figure 2.5 shows the dynamic effects on firm gross debt as a proportion of total assets
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Figure 2.5: Relative Leverage of Ineligible Firms Rise

The figure plots the dynamic treatment effects from the regression given by Equation 2.2 for total debt as
a proportion of 2019Q4 assets. The coefficient estimates in the pre-treatment period are null or positive.
Particularly, the recent coefficient estimates for 2017 and 2018 are positive, indicating that eligible firms are
more leveraged than ineligible firms prior to the pandemic, with a possible declining trend. In the treatment
horizon, the coefficients become negative and continue to decrease, indicating greater relative increases in
leverage for ineligible firms.

69



as of 2019Q4. The coefficient estimates in the pre-treatment period are null or positive.

Particularly, the recent coefficient estimates for 2017 and 2018 are positive, indicating that

eligible firms are more leveraged than ineligible firms prior to the pandemic, with a pos-

sible declining trend. In the treatment horizon, the coefficients become negative and con-

tinue to decrease, indicating greater relative increases in leverage for ineligible firms.

Figure 2.6: Relative Payouts by Eligible Firms Rise

The figure plots the dynamic treatment effects from the regression given by Equation 2.2 for payouts as a
portion of 2019Q4 total assets. The relative level of payouts between eligible and ineligible firms are generally
null for the pre-treatment period. In the treatment horizon, the point estimates for the dynamic treatment
effects are positive and increasing in the treatment horizon.

Figure 2.6 plots the dynamic treatment effects for payouts as a portion of 2019Q4 to-

tal assets. The relative level of payouts between eligible and ineligible firms are generally

null for the pre-treatment period. In the treatment horizon, the point estimates for the

dynamic treatment effects are positive and increasing in the treatment horizon.

Figure 2.7 plots the dynamic treatment effects for investment as a proportion of 2019Q4

total assets. In the pre-treatment period, the relative levels of investment between eligible

and ineligible firms were generally null in the pre-treatment period, although it was pos-
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Figure 2.7: Eligible Firms Display Relative Decline in Investment in 2020 Before Reversion

The figure plots the dynamic treatment effects for investment as a proportion of 2019Q4 total assets. In the
pre-treatment period, the relative levels of investment between eligible and ineligible firms were generally
null in the pre-treatment period, although it was possibly negative and statistically significant more recently.
While the point estimate falls in 2020, there is significant variation. It falls further in 2021 before starting
to revert.
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sibly negative and statistically significant more recently. While the point estimate falls in

2020, there is significant variation. It falls further in 2021 before starting to revert.

2.5.1 Discussion

Coefficients from the event study regressions are reported in Tables 2.9 in Appendix

2.9.1. The dynamic (homogeneous) treatment effects for cash and debt presented in this

section broadly align with the static (homogeneous) treatment effects shown in Table 2.3.

That is, the dynamic (homogeneous) treatment effects are consistently negative. Likewise,

the dynamic (homogeneous) treatment effects from payouts are consistent with the posi-

tive effect found in Table 2.4. Interestingly, while the static (homogeneous) treatment ef-

fect was null over the entire treatment horizon, as seen in Table 2.4, the dynamic (homoge-

neous) treatment effects for investment were negative for 2021, 2022, and 2022. Moreover,

the standard errors are particularly wide for investment, suggesting the presence of hetero-

geneous effects.

Overall, while the general absence of pre-trends may suggest that parallel trends may

hold in the treatment period, there may still be concerns about potential selection bias or

heterogeneous effects. Eligible issuers may have better navigated the pandemic by taking

on relatively lower leverage and increasing cash buffers to a lesser extant, while being more

cautious about investment and supporting payouts more as the crisis faded. The next sec-

tion attempts to better address potential threats to identification from regression designs

by using a deep nets in a setting with high-dimensional controls and flexible functional

forms, in addition to accounting for heterogeneous effects.
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2.6 Dynamic Heterogeneous Average Treatment Effects:

Two-Step Semi-Parametric DiD Estimators

2.6.1 Overview of Empirical Design

As mentioned, a key concern of the regression frameworks in Sections 2.4 and 2.5 is the

potential selection bias that is associated with the treatment variable being a proxy for

IG status. IG firms may naturally have been more resilient than HY firms, taking on less

leverage and increasing cash to a lesser extent, while maintaining firm payouts. The ideal

experiment would compare two virtually identical firms that only differ based on treat-

ment assignment (e.g. eligibility for the CCFs).

The causal ML approach used in this section attempts to take this idea to furthest ex-

tent possible by using a high-dimensional set of covariates that far exceeds the number of

observations without imposing variable selection or functional form restrictions on the in-

teractions across variables beforehand. The novel two-step semi-parametric DiD estimator

for computing dynamic (heterogeneous) treatment effects presented here is comparable

to an event study design with two-way fixed effects, which computes dynamic (homoge-

neous) treatment effects. The structural equation for potential outcomes consists of a lin-

ear combination of a non-parametric intercept term and the interaction between a treat-

ment indicator and non-parametric slope term. The intercept term corresponds to the out-

come of ineligible firms, or potential outcome of eligible firms had they not received treat-

ment. The slope term corresponds to the unit-level heterogeneous treatment effect, other-

wise called the CATE for eligible firms or the counterfactual, potential CATE for ineligible

firms.

In the first step, the non-parametric intercept and slope terms are estimated using deep

nets, as is the propensity score, which is a key ingredient in the estimators for the coeffi-

cients. The propensity score is the probability of a firm being classified as eligible given
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the high-dimensional set of characteristics. Deep nets are used because ability to approx-

imate continuous functions of real variables arbitrarily well, showing exceptional perfor-

mance in this regard [Chronopoulos et al., 2023]. Farrell, Liang, and Misra [2021b] pro-

vides the theoretical justification for using deep nets to estimate non-parametric terms in

the first step of two-step semi-parametric estimation and inference. Nonetheless, the re-

sults should be similar if using other high-quality ML algorithms, such as random forests

[Belloni, Chernozhukov, and Hansen, 2014, Chernozhukov et al., 2018].

However, because of the bias induced by regularization in a high-dimensional setting,

an IF estimator, or Neyman orthogonal score function, is required. The expression for the

DiD estimator used in this section is derived from the general formulation of IF estima-

tors given in Farrell, Liang, and Misra [2021a]. In addition, cross-fitting, the estimation

and evaluation of models across different samples, is used to prevent overfitting and pro-

duce unbiased estimates [Chernozhukov et al., 2018]. Section 2.6.3 goes into the require-

ments for identification of parameter estimates in greater detail, the key requirements are

that the unconfoundedness (or selection on observables) assumption and the overlap con-

dition holds [Farrell, Liang, and Misra, 2021b]. Given the DiD setup, unconfoundness can

be relaxed to the conditional versions of the no anticipation and parallel trends to identify

the average treatment effect on the treated (ATET), instead of the average treatment ef-

fect (ATE) [Chernozhukov et al., 2024]. Indeed, the general lack of pre-trends in the event

study regressions in Section 2.5 suggests that conditional parallel trends is a reasonable as-

sumption. Moreover, estimates of the ATE and ATET are not statistically different from

zero, as shown in Appendix 2.9.9.

The empirical design is used not only to address potential concerns around selection bias

but also to account for the effects of heterogeneity. As mentioned, CATEs for all firms are

recovered. The IF estimator appropriately weights the individual heterogeneous effects

when constructing the estimate of the ATE. In addition, the knowledge of CATEs allows
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for the study the effects of counterfactual policy targeting, which is undertaken in Section

2.7. Counterfactual effects are also identified, so long as unconfoundedness and overlap

holds [Farrell, Liang, and Misra, 2021b]. If unconfoundedness does not hold, the estimator

is still valid and recovers the predictive effects from alternative policy schemes. This is still

useful for policy analysis and diagnostics.

2.6.2 Modelling Framework

Let F denote the realized information for firms by the end of 2019. Let h = t − 2020,

where t is the year. Define ∆yhi = yhi − y−1
i , which is the difference in the outcome vari-

able for some year 2020 or later and its value in 2019. I restrict attention to all covariates

realized by the end of 2019, with less than 1% of observations missing: xi ⊂ F . I further

consider an expanded list of covariates by relaxing the tolerance for missing observations

to 10%. Binary treatment, zi, is defined to equal 1 if a firm’s cash bonds were eligible for

direct purchase by the Fed CCFs at the announcement date. All together this gives the

following potential outcomes model:

∆yhi = α(xi) + β(xi)zi + ei (2.3)

Note that this is a linear combination of a non-parameteric intercept term, α(xi), and the

interaction between a non-parameteric slope term, β(xi), and a binary variable, zi.

Let Y h(z) be the potential outcome at time h where Z denotes the treatment status:

E[∆Y h|X = x, Z = z] = E[∆Y h(z)|X = x, Z = z] = E[∆Y h(z)|X = x] = α(x) + β(x)z

where the first equality follows from the consistency assumption (the potential outcome is

consistent with the treatment assignment) and the second equality follows from the uncon-

foundedness and overlap assumptions (these are discussed further in Section 2.6.3).
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Taking the difference in the differences in the outcome variables yields:

E[∆Y h(1)−∆Y h(0)|X = x] = β(x)

Hence, the CATE is given by β(x) and ATE, incorporating in heterogeneity, is given by:

µ = E[β(x)] (2.4)

Given the DiD setting, the assumption of unconfoundedness can be relaxed to the weaker

assumptions of no anticipation and parallel trends, conditional on pre-treatment covari-

ates.20 This would identify the ATET, as is the case in Sections 2.4 and 2.5 [Chernozhukov

et al., 2024].21 22 The general lack of pre-trends observed in the event study regressions in

20. In effect, these assumptions require that, conditional on pre-treatment covariates, firms do not an-

ticipate the treatment (CCFs) in 2019 and absent the treatment, comparable firms’ dynamics would have

evolved similarly.

21. The ATET is given by the difference between the difference in the outcome variables for treated and

untreated firms, averaging over the entire sample. This is expressed as:

ATET = E[E[∆Y h(1)|Z = 1, X]− E[∆Y h(0)|Z = 0, X]]

= E[E[α(x) + β(x)|Z = 1, X]− E[α(x)|Z = 0, X]]

= E[α(x) + β(x)|Z = 1]− E[α(x)|Z = 0]

Hence, the ATET is equal to the average of the CATEs among treated firms if the average of the potential

outcome absent treatment is the same between treated and untreated firms. Section 2.9.9 derives the IF

estimator for the ATET. Section 2.9.9 compares the ATE and ATET estimates for the benchmark model

across all outcome variables, showing that the two are similar with no statistically significant difference in

any instance.

22. Another motivation of using a two-step semi-parametric DiD estimator is that adding controls to the

linear models in Sections 2.4 and 2.5 may not recover causal effects without strong restrictions functional

form and heterogeneity [Caetano et al., 2024].
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Section 2.5 suggests that the parallel trends assumption can be justified.

I also estimate the quantity, E[α(x)], and refer to it as the base effect. Plotting the evo-

lution of the base effect gives insight into the dynamics for outcome variables for ineligible

firms, as well as the potential outcome for eligible firms absent treatment.

Let the parameter vector be given by θ = (α, β), then the general expression for the

influence function estimator follows from Farrell, Liang, and Misra [2021a]:

ψ(∆yhi , zi, xi, θ(xi)) = H(xi, θ(xi))− (∇θH)(E[lθθ|X = x]−1lθ) (2.5)

where l the loss function, lθ = ∂
∂θ l is the score function, and lθθ = ∂2

∂θ∂θ′ l is the Hessian.

Given a mean squared error loss function, we can express l as:

l(∆yh, z, θ(x)) = l(∆yh, z, α(x), β(x)) =
1

2
(∆yh − α(x)− β(x)z)2

Consequently, the expression for the score is:

lθ = −

1

z

 (∆yh − α(x)− β(x)z)

And likewise, for the Hessian:

lθθ =

1 z

z z2


Let Λ(x) = E[lθθ|X = x]. Hence,

Λ(x) =

 1 p(x)

p(x) p(x)

 (2.6)
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where,

p(x) ≡ Pr(z|X = x) (2.7)

is the propensity score, or the probability of a firm being treated given its features.

The derivation for the ATE involves setting H(x, θ(x)) = β(x) and is shown in Ap-

pendix 2.9.4. The resultant estimator is analogous to the doubly-robust DiD estimator

of Sant’Anna and Zhao [2020] in a non-ML setting and the DML DiD estimator of Chang

[2020] for partially linear models.23 The setup for all three models is the basic 2 × 2, or

N × 2, difference in differences model with 2 units, which are either treated or control, or

N units split into these groups, and 2 time periods, pre- and post- treatment. All three

estimators have the doubly-robust property: they are consistent estimators of the aver-

age treatment effect if either the potential outcome model given by Equation 2.3 or the

propensity scores, Equation 2.7, are correctly estimated, but not necessarily both.

Consequently, in the results presented here, the dynamic (heterogeneous) base and treat-

ment effects are computed by re-running the two-step semi-parameteric model period by

period over the treatment horizon. Alternatively, this can be extended to estimating the

dynamic effects simultaneously in a panel version of two-step semi-parametric estimators,

as in Chronopoulos et al. [2023]. Identification is similar in both cases [Miller, 2023].

2.6.3 Discussion on Identification

As mentioned, Farrell, Liang, and Misra [2021b] provide the theoretical justification for us-

ing deep nets in the first step of two step estimation when inference is conducted on the

second step using an influence function estimator, as in Equation 2.5. In addition, they

mention two requirements the estimation of a potential outcomes model, as in Equation

2.3, need to satisfy in order to identify causal parameters of interest. These are uncon-

23. This corresponds to case where β(x) = β is homogeneous in Equation 2.3.
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foundedness (i.e. selection on observables) and overlap.24

Unconfoundedness

An advantage of using deep nets is that it allows for the consideration of a high-dimensional

feature space along with arbitrary interactions and transformations among potential co-

variates. The list of firm characteristics used in estimation is given by Tables 2.10 and

2.11. In addition, indicator variables for industry classification are used. The histories of

data used range from 1 year to 10 years. To accommodate such a high-dimensional feature

space, deep architectures are used for the neural networks, as shown in Tables 2.12 and

2.13. Consequently, the claim is that any unobserved variable correlated with the treat-

ment, and potentially biasing the results, is likely to be spanned by the high-dimensional

feature space, the transformation of features, and their interactions. As such, the selection

on observables assumption is likely satisfied.

As previously noted, given the DiD setup, the assumption of unconfoundedness can be

relaxed to the weaker assumptions of conditional no anticipation and parallel trends. This

requires that, conditional on pre-treatment covariates, comparable firms did not antici-

pate the CCF interventions in 2019, which is reasonable given the unprecedented nature

of the pandemic, and that treated firms would have had similar dynamics to their un-

treated counterparts, absent intervention. The general lack of pre-trends observed in the

event study regressions in Section 2.5 suggests that the parallel trends assumption can

be justified. The cost of moving to these weaker assumptions is that the model identifies

the ATET rather than the ATE [Chernozhukov et al., 2024]. Section 2.5 suggests that the

parallel trends assumption can be justified. Section 2.9.9 compares the ATE and ATET

estimates, finding statistically negligible differences.

24. The assumption of consistency is also required to ensure that observed outcomes correspond to the

assigned treatment, which is also assumed here.
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Overlap

The overlap condition is satisfied if propensity scores, given by Equation 2.7 are bounded

away from zero and one. Figures 2.1, 2.2, and 2.3 help support the argument that the

overlap condition is satisfied. Graphically, both the data on firm characteristics and CDS

spreads shows a significant overlap in distributions between eligible and ineligible firms.

Indeed, the CCF’s reliance on ratings to determine eligibility is critical to the identifica-

tion strategy. As argued by several papers, ratings lag and can be predicted by fundamen-

tal data [Altman and Rijken, 2004], given ratings agencies’ desire for ratings stability. In

addition, there is some evidence of a loosening of ratings standards heading into the pan-

demic. Celik, Demirtaş, and Isaksson [2020] document that within-rating leverage ratios

increased by 2019, as the number of BBB-rated firms increased. Additionally, downgrade

frequency declined relative to upgrades, with BB+ rated issuers having the highest prob-

ability of a 1-notch upgrade within a year and BBB- rated issuers having the lowest prob-

ability of a 1-notch downgrade. Consistent with this, Altman [2020] finds that based on

2019 data, 34% of BBB-rated firms can be classified as HY based largely on fundamental

characteristics based on the Altman Z-score.

In the same vein, CDS spreads lead and predict future ratings changes CDS spreads

[Lee, Naranjo, and Velioglu, 2018, Lee, Naranjo, and Sirmans, 2021]. Not only does Figure

2.3 show a significant overlap between eligible and ineligible firms’ CDS spread distribu-

tion, the support of the former lies almost entirely within the support of the latter. This

suggests had the eligibility criteria been determined by CDS spreads rather than credit

ratings, many eligible firms would have been deemed ineligible, and vice-versa.

In summary, there is rich overlap in the feature space across eligible and ineligible firms.

This suggests that the overlap condition is satisfied and allows for the IF estimator given

by Equation 2.5 to be well-defined.
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2.6.4 Estimation Procedure

x(1)

x(d)

α(x)

β(x)

z

∆y = α(x) + β(x)z

Hidden layersInput layer Parameter
layer

Model
layer

Figure 2.8: Deep Net Architecture for the Potential Outcomes Model

The figure represents the deep net architecture for estimating the parameters in the potential outcomes
model given by Equation 2.3. Specific values for the number of inputs and hidden layer architecture are
reported in Table 2.12 for models with features with less than 1% missing observations and Table 2.13 for
models with features with less than 10% missing observations.

x(1)

x(d)

p(x)

Hidden layersInput layer Output
layer

Figure 2.9: Deep Net Architecture for Propensity Scores

The figure represents the deep net architecture for estimating the propensity scores given by Equation 2.7.
Specific values for the number of inputs and hidden layer architecture are reported in Table 2.12 for models
with features with less than 1% missing observations and Table 2.13 for models with features with less than
10% missing observations.

I obtain features for the deep nets from the Financial Ratios Suite by WRDS. Quarterly

variables with less than 1% missing observations are used with histories going back 1, 5,

and 10 years. Table 2.10 in the Appendix reports the list of 37 features where less than

1% of observations are missing over a 10 year history from 2010Q1 to 2019Q4. As a ro-

bustness check, 23 additional features are added by increasing the tolerance of missing ob-

servations to 10%; these are reported in Table 2.11. Missing information is replaced with
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the quarter-industry median and dummy variables are added to track missing data. Addi-

tionally, dummy variables for two-digit NAICS industry codes are used.

Figure 2.8 illustrates the architecture used to estimate the parameters for Equation 2.3.

Table 2.12 reports specific values for the number of inputs and the hidden layer architec-

tures associated with the models with covariate histories of 1, 5, and 10 years, respectively.

Propensity scores are estimated in a similar fashion and with the same architecture, as

seen in Figure 2.9. The deep net models for the parameters for Equation 2.3 use recti-

fied linear (ReLU) activation functions within the hidden layers. A linear output layer

combines the parameter estimates and treatment indicator to get an estimated outcome.

Then, a mean-squared error loss function is applied to the estimated and actual outcomes.

The deep net models for propensity scores use hyperbolic tangent (tanh) activation func-

tions within the hidden layers with a sigmoid output layer and a binary cross-entropy loss

function. This is done to have propensity scores bounded within zero and one so that the

IF estimator is well-defined.

The procedure to estimate any parameter of interest requires three folds of cross-fitting.

Cross-fitting involves estimating deep nets on one set of data and evaluating it on another.

This is done to prevent over-fitting and to produce unbiased estimators [Chernozhukov

et al., 2018]. The dataset is split into three random samples of equal size. A deep net is

trained on each sample to produce models for the parameters in Equation 2.3. Separately,

deep nets are trained to produce propensity scores. Finally, the influence function is com-

puted by evaluating data from a third sample on models for the CATEs and propensity

scores each trained on different samples.25 Given the cross-fit procedure, dropout regular-

ization is used in training the deep nets to reduce overfitting and so, increase efficiency.26

25. Sample code demonstrating the ability of the estimator to recover parameters in simulated data can

be found here: https://github.com/rmmomin/causal-ml-auto-inference.

26. The reported results are from models trained with a dropout rate of 20% but similar results are ob-

tained by using a dropout rate equal to 30%, 40%, or 50%.
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To further improve efficiency, I run multiple cross-fit iterations. I take the median of

estimators computed across M cross-fit partitions and its associated variance:27

µ̃0 = Median
(
(µ0,m)m∈[M ]

)
σ̂2 =

√
Median

(
σ̂2m + (µ̃0,m − µ̃0)2

)
m∈[M ]

where µ̃0 is the parameter of interest, µ̃0,m is the parameter estimate corresponding to

partition m of cross-fitting, and σ̂2 is the variance. The asymptotic standard error is given

by σ̂2/
√
N , where N is the number of observations. In the reported results, 10 cross-fit

partitions are generated for each deep net estimation.28

Additionally, as mentioned in Section 2.6.2, the model is estimated period by period

over the treatment horizon. An extension to the framework would be to estimate these ef-

fects simultaneously in a panel setting of the two-step semi-parametric model, as in Chronopou-

los et al. [2023].

2.6.5 Base Effects

To estimate the base effect, set H(x, θ(x)) = α(x) in Equation 2.5. Appendix 2.9.3 pro-

vides details on the derivation of the estimator.

Figure 2.10 plots the base effects for the change in cash holdings, as a percent of 2019Q4

assets, using a model with 10 years of feature history and 1% tolerance for missing obser-

vations. Details on its architecture are reported in Table 2.12 in the Appendix. Consistent

with the DiD regressions reported in Table 2.3, a large base effect is identified for 2020 on-

wards. However, the dynamics of cash holdings suggests that these peaked for all firms in

27. See https://docs.doubleml.org/stable/guide/resampling.html.

28. The results are similar when the models are run using 5 cross-fit partitions for each deep net esti-

mation. Nonetheless, the cross-fitting approach inherently introduces stochasticity to the results which

motivates the use of multiple partitions for robustness.
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Figure 2.10: Large Base Effect with Increase in Cash Holdings

The figure plots the base effects for the change in cash holdings, as a percent of 2019Q4 assets. The model
above uses 10 years of feature history and 1% tolerance for missing observations. Details on its architecture
are reported in Table 2.12 in the Appendix. Table 2.14 reports results across all model specifications.
Consistent with the DiD regressions reported in Table 2.3, a large base effect is identified for 2020 onwards.
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2021 and then began to fall, perhaps as uncertainty from the pandemic and so, demand for

precautionary liquidity began to fade. The finding of large, positive base effects, as well as

its dynamics, are largely consistent across different model specifications, as shown in Table

2.14.

Figure 2.11: Large Base Effect with Increase in Total Debt

The figure plots the base effects for the change in debt, as a percent of 2019Q4 assets. The model above
uses 10 years of feature history and 1% tolerance for missing observations. Details on its architecture are
reported in Table 2.12 in the Appendix. Table 2.15 reports results across all model specifications. Consistent
with the DiD regressions reported in Table 2.3, a large base effect is identified for 2020 onwards.

Figure 2.11 plots the base effects for the change in debt, as a percent of 2019Q4 assets,

using a model with 10 years of feature history and 1% tolerance for missing observations.

Details on its architecture are reported in Table 2.12 in the Appendix. Consistent with the

DiD regressions reported in Table 2.3, a large base effect is identified for 2020 onwards. In

contrast to cash holdings, the base effects for leverage has remain elevated. This suggests

that ineligible firms did not deleverage as their cash reserves fell. The finding of large,

positive base effects, as well as an increasing trend, are largely consistent across different
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model specifications, as shown in Table 2.15.

Figure 2.12: Payout Base Effect Initially Negative Then Increases

The figure plots the base effects for the difference in annual payouts versus 2019, scaled by 2019Q4 assets.
The model above uses 10 years of feature history and 1% tolerance for missing observations. Details on
its architecture are reported in Table 2.12 in the Appendix. Table 2.16 reports results across all model
specifications. In contrast to the null results picked up by the DiD regressions reported in Table 2.4, the
base effect here changes over the observation period, initially negative in 2020 and then increasing.

Figure 2.12 plots the base effects for the difference in annual payouts versus 2019, scaled

by 2019Q4 assets, using a model with 10 years of feature history and 1% tolerance for

missing observations. Details on its architecture are reported in Table 2.12 in the Ap-

pendix. In contrast to the null results picked up by the DiD regressions reported in Table

2.4, the base effect here changes over the observation period, initially negative in 2020 and

then increasing. This is consistent with firms initially reducing payouts to preserve liquid-

ity and then resuming them as conditions improved. These results are largely consistent

across different model specifications, as shown in Table 2.16.

Figure 2.13 plots the base effects for the difference in annual investment versus 2019,

scaled by 2019Q4 assets, using a model with 10 years of feature history and 1% tolerance
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Figure 2.13: Investment Base Effect Null then Increasing

The figure plots the base effects for the difference in annual investment versus 2019, scaled by 2019Q4 assets.
The model above uses 10 years of feature history and 1% tolerance for missing observations. Details on
its architecture are reported in Table 2.12 in the Appendix. Table 2.17 reports results across all model
specifications. Consistent with the positive effect found for the post period in the DiD regressions reported
in Table 2.4, positive effects are generally found over the treatment period. Figure 2.22 plots the base effects
corresponding to proxying investment with the annual change in gross property, plant, and equipment. In
contrast to here, negative base effects are estimated for 2020 and 2021, which then become null for 2022 and
2023.
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for missing observations. Details on its architecture are reported in Table 2.12 in the Ap-

pendix. Consistent with the positive effect found for the post period in the DiD regres-

sions reported in Table 2.4, positive effects are generally found over the treatment period.

However, these results are not robust to an alternative proxy for investment. Figure 2.22

plots the base effects corresponding to proxying investment with the annual change in

gross property, plant, and equipment. In contrast to here, negative base effects are esti-

mated for 2020 and 2021, which then become null for 2022 and 2023. These results are

largely consistent across different model specification, as shown in Table 2.30.

2.6.6 ATE with Heterogeneity

To estimate the ATE, set H(x, θ(x)) = β(x) in Equation 2.5. For each cross-fit fold, the

estimator becomes:

µ̂s =
1

N

∑
ψ(∆yh, z, x, θ) =

1

N

∑[
β(x) +

z(∆yh − α(x)− β(x)z)

p(x)
− (1− z)(∆yh − α(x))

1− p(x)

]
(2.8)

Appendix 2.9.4 provides details on the derivation. The final estimate of Equation 2.4 is

then obtained by averaging the estimates from each fold:

µ̂ =
1

3

∑
µ̂s (2.9)

While the ATE is identified under the assumption of unconfoundedness, this assumption

can be relaxed to conditional no anticipation and parallel trends to identify the ATET in-

stead. The general lack of pre-trends observed in the event study regressions in Section 2.5

suggests that the parallel trends assumption can be justified. Section 2.9.9 compares the

ATE and ATET estimates, finding statistically negligible differences.

Figure 2.14 plots the average treatment effects for the change in cash holdings over dif-

ferent horizons, accounting for heterogeneity, using a model with 10 years of feature his-
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Figure 2.14: Cash ATE With Heterogeneity Shows Large Negative Effect

The figure plots the average treatment effects for the change in cash holdings, as a percent of 2019Q4 assets.
This corresponds to the estimator reported in Equation 2.9. The model above uses 10 years of feature
history and 1% tolerance for missing observations. Details on its architecture are reported in Table 2.12 in
the Appendix. Table 2.18 reports results across all model specifications. Large negative treatment effects are
estimated over the entire horizon. Table 2.5 compares the treatment effect estimates across different models
and suggests that results are broadly in line.
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tory and 1% tolerance for missing observations. Details on its architecture are reported in

Table 2.12 in the Appendix. Large negative treatment effects are estimated over the entire

horizon, consistent with static (homogeneous) treatment effects estimated by the DiD re-

gressions and the dynamic (homogeneous) treatment effects estimated by the event study

regressions. These are summarized in Table 2.5. Table 2.18 reports the results across dif-

ferent model specifications, showing that the estimates are robust.

Table 2.5: Cash Treatment Effect Comparison

Treatment Effect Estimates
Cash (% 2019Q4 Assets)

Year Static (Homogeneous) Dynamic (Heterogeneous) Dynamic (Homogeneous) Difference
(1) (2) (1)-(2)

2020 -2.98 -3.82 0.84
(1.00) (0.79)

2021 -10.50 -9.52 -0.98
(4.06) (2.42)

2022 -7.61 -6.92 -0.68
(3.00) (2.27)

2023 -3.42 -4.01 0.59
(1.43) (1.09)

Eligible × -7.46
Post 2020 (2.05)
Standard-errors in parentheses

The table reports the treatment effect estimates for cash, as a percent of 2019Q4, across the three models
examined in this paper. The static (homogoeneous) treatment effect comes from the DiD regressions reported
in Table 2.3, while the dynamic (homogeneous) treatment effects correspond to the event study regressions
with two-way fixed effects, reported in Table 2.9 and shown in Figure 2.4. The different treatment effect
estimates are broadly in line.

Figure 2.15 plots the average treatment effects for change in total debt over different

horizons, accounting for heterogeneity, using a model with 10 years of feature history and

1% tolerance for missing observations. Details on its architecture are reported in Table

2.12 in the Appendix. While an initial null effect is picked up for 2020, this becomes neg-

ative and large for the remainder of the horizon. This suggests that both eligible and in-

eligible firms initially increased leverage in 2020, but subsequently, eligible firms began

deleveraging, while ineligible firms did not. Table 2.6 compares the treatment effect es-

timates across different models and suggests that the results are broadly in line. These
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Figure 2.15: Debt ATE With Heterogeneity Negative After 2020

The figure plots the average treatment effects for change in total debt, as a percent of 2019Q4 assets. This
corresponds to the estimator reported in Equation 2.9. The model above uses 10 years of feature history and
1% tolerance for missing observations. Details on its architecture are reported in Table 2.12 in the Appendix.
Table 2.19 reports results across all model specifications. While an initial null effect is picked up for 2020,
this becomes negative and large for the remainder of the horizon. Table 2.6 compares the treatment effect
estimates across different models and suggests that the results are broadly in line.
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results are robust to other model specifications, as shown in Table 2.19.

Table 2.6: Debt Treatment Effect Comparison

Treatment Effect Estimates
Total Debt (% 2019Q4 Assets)

Year Static (Homogeneous) Dynamic (Heterogeneous) Dynamic (Homogeneous) Difference
(1) (2) (1)-(2)

2020 -0.69 -1.66 0.98
(1.10) (0.65)

2021 -6.75 -5.95 -0.79
(2.41) (2.30)

2022 -9.48 -9.08 -0.40
(3.09) (2.59)

2023 -8.58 -8.47 -0.10
(2.90) (1.95)

Eligible × -6.21
Post 2020 (2.73)
Standard-errors in parentheses

The table reports the treatment effect estimates for debt, as a percent of 2019Q4, across the three models
examined in this paper. The static (homogoeneous) treatment effect comes from the DiD regressions reported
in Table 2.3, while the dynamic (homogeneous) treatment effects correspond to the event study regressions
with two-way fixed effects, reported in Table 2.9 and shown in Figure 2.5. The different treatment effect
estimates are broadly in line.

Figure 2.16 plots the average treatment effects for the difference in annual payouts ver-

sus 2019, as a percent of 2019Q4 assets. The estimates are from the model using 10 years

of feature history and 1% tolerance for missing observations; complete Details on its archi-

tecture are reported in Table 2.12 in the Appendix. The payout treatment effect is initially

positive in 2020, then null for 2021, and again positive for 2022 and 2023. Table 2.7 com-

pares the treatment effect estimates across different models. Interestingly, the point esti-

mates for the dynamic (heterogeneous) treatment effects are smaller than both the static

(homogeneous) treatment effects and the dynamic (heterogeneous) treatment effects, but

as are the standard errors. In general, this could suggest that the selection bias for the re-

gression models results in an upward bias to treatment effects, consistent with IG firms

being more resilient and maintaining payouts. These results are consistent across models

using 5 and 10 years of feature history, as seen in Table 2.20.

Figure 2.17 plots the average treatment effects for the difference in annual investment
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Figure 2.16: Payout ATE Generally Positive

The figure plots the average treatment effects for the difference in annual payouts versus 2019, as a percent of
2019Q4 assets. This corresponds to the estimator reported in Equation 2.9. The model above uses 10 years
of feature history and 1% tolerance for missing observations. Details on its architecture are reported in Table
2.12 in the Appendix. Table 2.20 reports results across all model specifications. The payout treatment effect
is initially positive in 2020, then null for 2021, and again positive for 2022 and 2023. Table 2.7 compares the
treatment effect estimates across different models. While the treatment effects are comparable, the standard
errors for the dynamic (heterogeneous) treatment effects are smaller.
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Figure 2.17: Investment ATE With Heterogeneity Consistent With Previous Estimates

The figure plots the average treatment effects for the difference in annual investment versus 2019, scaled by
2019Q4 assets. This corresponds to the estimator reported in Equation 2.9. The model above uses 10 years
of feature history and 1% tolerance for missing observations. Details on its architecture are reported in Table
2.12 in the Appendix. Table 2.21 reports results across all model specifications, null-to-negative treatment
effects are estimated, particularly for the models with longer covariate histories. Table 2.8 compares the
different treatment effects estimated by each model, showing that incorporating high-dimensional controls
and heterogeneity increases the point estimates for the dynamic effects. Figure 2.23 and Table 2.31 show
the treatment effect dynamics when proxying investment by the annual change in gross property, plant, and
equipment. For this proxy, null effects are estimated for every specification.
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Table 2.7: Payout Treatment Effect Comparison

Treatment Effect Estimates
Payout (% 2019Q4 Assets)

Year Static (Homogeneous) Dynamic (Heterogeneous) Dynamic (Homogeneous) Difference
(1) (2) (1)-(2)

2020 0.13 0.54 -0.41
(0.06) (0.34)

2021 0.23 0.65 -0.42
(0.25) (0.36)

2022 0.83 0.99 -0.16
(0.26) (0.37)

2023 0.48 0.86 -0.38
(0.17) (0.39)

Eligible × 1.16
Post 2020 (0.23)
Standard-errors in parentheses

The table reports the treatment effect estimates for payout, as a percent of 2019Q4 assets, across the three
models examined in this paper. The static (homogeneous) treatment effect comes from the DiD regressions
reported in Table 2.4, while the dynamic (homogeneous) treatment effects correspond to the event study
regressions with two-way fixed effects, reported in Table 2.9 and shown in Figure 2.6. The point estimates
for the dynamic (heterogeneous) treatment effects are smaller than both the static (homogeneous) treatment
effects and the dynamic (heterogeneous) treatment effects, but as are the standard errors. The systematic
negative difference in the point estimates can be attributed to either selection bias in the regression models
which is better controlled for by covariates or heterogeneous effects.

versus 2019, scaled by 2019Q4 assets, using a model with 10 years of feature history and

1% tolerance for missing observations. Details on its architecture are reported in Table

2.12 in the Appendix. Table 2.21 reports results across all model specifications, showing

that null-to-negative effects are estimated in every instance. Table 2.8 compares the differ-

ent treatment effects estimated by each model, showing that incorporating high-dimensional

controls and heterogeneity actually increases point estimates for the dynamic effects. Fig-

ure 2.23 and Table 2.31 show the treatment effect dynamics when proxying investment by

the annual change in gross property, plant, and equipment. For this proxy, null effects are

estimated for every specification.

The dynamic (heterogeneous) treatment effects estimated in this section suggest that

eligible firms increased cash holdings to a lesser extent than ineligible firms and also took

on less leverage, as well. These are consistent with both the static (homogeneous) treat-

ment effects estimated by the DiD panel regression in Section 2.4 and the dynamic (ho-

95



Table 2.8: Investment Treatment Effect Comparison

Treatment Effect Estimates
CAPEX and R&D (% 2019Q4 Assets)

Year Static (Homogeneous) Dynamic (Heterogeneous) Dynamic (Homogeneous) Difference
(1) (2) (1)-(2)

2020 0.12 -0.49 0.62
(0.14) (0.58)

2021 -0.27 -1.88 1.61
(0.23) (0.80)

2022 -0.49 -0.99 0.50
(0.18) (0.41)

2023 -0.33 -0.62 0.29
(0.23) (0.29)

Eligible × -0.90
Post 2020 (0.66)
Standard-errors in parentheses

The table reports the treatment effect estimates for investment, as a percent of 2019Q4, across the three
models examined in this paper. The static (homogeneous) treatment effect comes from the DiD regressions
reported in Table 2.4, while the dynamic (homogeneous) treatment effects correspond to the event study
regressions with two-way fixed effects, reported in Table 2.9 and shown in Figure 2.7. The point estimates
for the dynamic (heterogeneous) treatment effects are larger than the dynamic (homogeneous) treatment
effects. The systematic positive difference in the point estimates can be attributed to either selection bias
in the regression models which is better controlled for by covariates or heterogeneous effects.

mogeneous) treatment effects estimated by the event study regressions with two-way fixed

effects in Section 2.5. A comparison of the dynamic treatment effects across the two de-

signs reveals relatively similar point estimates with no uniform direction in the difference

(positive or negative).

In contrast, the dynamic (heterogeneous) treatment effects estimated in this section are

generally smaller than those estimated in Section 2.5, with the exception of investment.

This could be due to the effects of either selection bias, which is accounted for by high-

dimensional controls, or the effects of heterogeneity. For payouts, the lower point estimates

are also accompanied by smaller standard errors and reinforce the result that eligible firms

had relatively higher levels of payouts. Even though the dynamic (heterogeneous) treat-

ment effects for investment are larger, these are still null or negative, similar to the dy-

namic (homogeneous) treatment effect found in 2020 in Section 2.5. An alternative proxy

for investment reinforces this conclusion.
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Discussion on Selection Bias for Investment

Selection bias for investment may be positive or negative. Given that the treatment was

assigned on the basis of IG status, positive selection bias may arise if IG rated firms have

more investment opportunities, while negative selection bias may arise if managers of IG

firms are more cautious/disciplined about investment, as examples. The lack of pre-trends

in the event study regressions in Section 2.5 suggests that there is no systematic differ-

ence in relative investment in the pre-treatment period. The causal ML estimator with

a high-dimensional control structure presented in this section should provide additional

safeguards against this by spanning any potential omitted variable. To the extent that

the effect of such omitted variables are not controlled, then a positive selection bias due

to investment opportunities would suggest that the estimated treatment effect is biased

upwards. Given that negative or null effects are found for both investment proxies, this

should strengthen the argument that the Fed CCFs did not meet its objectives of improv-

ing real outcomes.

However, if negative selection bias is present, then the results shown here underestimate

the true effect and do not necessarily provide evidence that Fed CCF eligibility failed to

spur investment. This would require that differencing out the trend in the outcome vari-

able for ineligible firms as well as controlling for a high dimensional set of variables fails

to properly address (negative) selection effects. More precise identification strategies ex-

ploiting plausibly exogenous variation may better assuage fears around selection bias but

would come at the cost of external validity. Uniquely, the casual ML approach presented

here allows for the estimation of heterogeneous effects and permits counterfactual analysis.

2.7 Counterfactual Treatment Effects and Targeting

This section explores the impact of extending direct cash bond support to ineligible firms.

The counterfactual treatment effect is given by the group average treatment effect (GATE)
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for ineligible firms: E[gβ(x)], where g is a vector of indicator variables denoting if a firm is

rated B or BB. Hence, set H(x, θ(x)) = gβ(x) in Equation 2.5, and the derivation of the

estimator proceeds similarly to Appendix 2.9.4. The assumption of unconfoundedness is

needed here to have a causal interpretation. If this fails to hold, the estimator is still valid

but instead identifies a predictive effect, which would still be useful for policy analysis.

A simple framework, such as in Brunnermeier and Krishnamurthy [2020], would suggest

that targeting lower-rated firms should result in a stronger decrease in borrowing costs,

and so, should stimulate more real activity. This argument is further strengthened by the

CFO survey evidence of Campello, Graham, and Harvey [2010] and Barry et al. [2022]

which suggests that financial constraints hamper investment during crisis periods. Momin

and Li [2025] apply the counterfactual treatment effect estimator presented in this section

to ineligible issuers’ bond spreads and find that extending direct cash bond support to in-

eligible issuers would have resulted in around 500 bps of spread tightening.

Figure 2.18 plots the counterfactual treatment effect for ineligible firms’ annual invest-

ment versus 2019, as a percent of 2019Q4 assets, for the model using 10 years of feature

history and 1% tolerance for missing observations. A statistically significant positive effect

is estimated for 2020 while null effects are estimated for subsequent years. This suggests

that had ineligible firms’ received direct cash bond support from the CCFs, their invest-

ment in 2020 would have been higher. However, this estimate is not robust to using an

alternative proxy for investment based on the annual change in gross property, plant, and

equipment, as shown in Figure 2.24.

While the counterfactual treatment effect estimates provide inconclusive evidence on the

investment effects from extending direct cash bond support from the CCFs to ineligible

firms, the estimates for debt, Figure 2.20, and payouts, Figure 2.21, suggest that ineligi-

ble firms would have increased leverage in 2020 and distributed larger payouts in 2020 and

2022. In contrast, the estimate of the effect of the counterfactual treatment on cash is null
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Figure 2.18: Positive Counterfactual Treatment Effect for Investment Not Robust to Alter-
native Proxy

The figure plots the counterfactual treatment effect for ineligible firms’ annual investment versus 2019, as
a percent of 2019Q4 assets, for the model using 10 years of feature history and 1% tolerance for missing
observations. Details on its architecture are reported in Table 2.12 in the Appendix. The positive estimate
for 2020 suggests that ineligible firms’ investment may have received a boost in case of direct cash bond
support from the CCFs. This estimate is generally robust across specifications, as shown in Table 2.29.
However, the result is not robust to using an alternative proxy for investment, computed as the annual
change in gross property, plant, and equipment, as shown in Figure 2.24. Both proxies suggest a lack of
statistically significant positive effects for 2021 onward.
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Figure 2.19: Null Counterfactual Treatment Effects for Cash

The figure plots the counterfactual treatment effect for ineligible firms’ change in cash holdings, as a percent
of 2019Q4 assets, for the model using 10 years of feature history and 1% tolerance for missing observations.
Details on its architecture are reported in Table 2.12 in the Appendix. Null results are estimated across
different model specifications and horizons, as reported in Table 2.26.
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Figure 2.20: Positive Counterfactual Treatment Effect for Debt

The figure plots the counterfactual treatment effect for ineligible firms’ change in total debt, as a percent
of 2019Q4 assets, for the model using 10 years of feature history and 1% tolerance for missing observations.
Details on its architecture are reported in Table 2.12 in the Appendix. positive and statistically significant
effects are generally estimated for 2020 for model specifications with at least 5 years of feature history, as
shown in Table 2.27. However, the estimate for 2021 is not robust to different model specifications. Together
with the counterfactual treatment effect estimate for payouts, reported in Figure 2.21, the results suggest
that had direct cash bond support from the CCFs been extended to ineligible firms, their leverage and
payouts would have increased in 2020.
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Figure 2.21: Positive Counterfactual Treatment Effect for Payouts

The figure plots the counterfactual treatment effect for ineligible firms’ annual payouts versus 2019, as
a percent of 2019Q4 assets, for the model using 10 years of feature history and 1% tolerance for missing
observations. Details on its architecture are reported in Table 2.12 in the Appendix. Positive and statistically
significant effects are generally estimated for 2020 and 2022 for model specifications with at least 5 years
of feature history, as shown in Table 2.28. Together with the counterfactual treatment effect estimate for
debt, reported in Figure 2.21, the results suggest that had direct cash bond support from the CCFs been
extended to ineligible firms, their leverage and payouts would have increased in 2020, while payouts would
have increased in 2022.
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across horizons, as seen in Figure 2.19. This broad, stylized pattern (a possible lack of in-

vestment response, higher leverage, and higher payouts) is rationalized by Momin [2025a]

in a dynamic capital structure model with investment where firms lack the ability to com-

mit to a debt issuance policy and where the public sector intervenes in the unsecured debt

of financially unconstrained firms.

2.8 Conclusion

I present a novel two-step semi-parametric difference-in-differences estimator for comput-

ing dynamic (heterogeneous) treatment effects that is comparable to an event study design

with two-way fixed effects. The structural equation for potential outcomes is the linear

combination of a non-parametric intercept term and the interaction of a treatment in-

dicator and a non-parametric slope term. The slope term captures individual level het-

erogeneity, that is, conditional average treatment effects. Another ingredient for the es-

timator is an estimation of propensity scores, the probability of a firm being classified

as eligible for the CCFs, which is also modeled as a non-parametric function of a high-

dimensional set of characteristics. The non-parametric terms are estimated using deep

neural networks. Given that the assumptions of unconfoundedness and the overlap con-

dition are satisfied, this allows for the identification of average treatment effects that ac-

count for heterogeneity and counterfactual treatment effects from alternative policy tar-

geting. Given the difference-in-differences setup, the assumption of unconfoundedness can

be relaxed to weaker assumptions of (conditional) no anticipation and parallel trends, thus

identifying the average treatment effect on the treated, instead. Given a general lack of

pre-trends in the event study regressions, conditional parallel trends is a justifiable as-

sumption, and estimates of the ATE and ATET from the two-step estimator are not sta-

tistically different from zero.

The estimator is applied to study the financial and real effects of the Federal Reserve’s
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Corporate Credit Facilities launched in 2020 amid the COVID-19 pandemic, as well as the

effects of counterfactual eligibility criteria. Dynamic (heterogeneous) treatment effects

from the novel estimator are comparable to static (homogeneous) treatment effects from

a difference-in-differences panel regression and dynamic (homogeneous) treatment effects

from an event study design with two-way fixed effects. The results show that while all

firms increased leverage and cash holdings as a proportion of 2019 year-end assets, firms

eligible for the CCFs increased leverage and cash to a relatively lower extent than ineligi-

ble firms. Moreover, eligible firms do not show an increased investment response, which

suggests that the CCFs may not have met its objective for producing real effects. This is

robust to alternative proxies for investment. In contrast, eligible firms did increase payouts

to shareholders. Counterfactual policy targeting loosening the CCFs eligibility criteria to

target weaker credits with possibly more binding financially constraints produces weak to

inconclusive evidence of improved investment outcomes in 2020, while there is no evidence

of improved outcomes found for later periods. However, counterfactual treatment effect es-

timates suggest that ineligible firms, had they received direct cash bond support from the

CCFs, would have increased leverage in 2020 and payouts in 2020 and 2022.

Noting that both in the United States, as well as in Europe, CCFs failed to stimulate

investment [De Santis and Zaghini, 2021, Grosse-Rueschkamp, Steffen, and Streitz, 2019,

Todorov, 2020], Momin [2025a] rationalizes these stylized empirical facts and explores

changes to the design of the CCFs to encourage firm investment.
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2.9 Appendix

2.9.1 Event Study Regressions with Two-Way Fixed Effects

Table 2.9: Dynamic (Homogeneous) Treatment Effects

Dependent Variables: Cash (% 2019Q4 Assets) Total Debt (% 2019Q4 Assets) Dividends and Buybacks (% 2019Q4 Assets) Capital Expenditures and R&D (% 2019Q4 Assets)
Model: (1) (2) (3) (4)

Variables
2011 1.605∗∗ 5.950∗∗ -0.8059∗∗∗ -0.2164

(0.6316) (2.460) (0.2578) (0.2804)
2012 2.202∗∗∗ 4.198 -0.3333 -0.5236

(0.5401) (2.385) (0.3084) (0.4549)
2013 1.577∗∗ 5.409∗∗ -0.5584 -0.3305

(0.6211) (2.446) (0.3708) (0.3674)
2014 2.043∗∗∗ 3.310 -0.3442 -0.5331

(0.3430) (2.249) (0.3585) (0.3729)
2015 -0.8817 2.094 -0.4685 -0.5136

(1.330) (2.297) (0.3482) (0.4647)
2016 2.130∗∗∗ 2.960∗ -0.0752 -0.3801

(0.0944) (1.514) (0.3333) (0.2178)
2017 0.4773 4.476∗∗∗ -1.408∗ -0.1844∗∗

(0.7562) (0.9942) (0.7130) (0.0817)
2018 -0.1416 2.766∗∗ 0.1208 -0.1778∗

(0.1550) (1.145) (0.3248) (0.0927)
2020 -3.822∗∗∗ -1.662∗∗ 0.5398 -0.4923

(0.7861) (0.6474) (0.3370) (0.5767)
2021 -9.520∗∗∗ -5.954∗∗ 0.6531∗ -1.877∗∗

(2.418) (2.304) (0.3596) (0.8043)
2022 -6.923∗∗∗ -9.084∗∗∗ 0.9944∗∗ -0.9863∗∗

(2.265) (2.591) (0.3708) (0.4143)
2023 -4.005∗∗∗ -8.471∗∗∗ 0.8602∗∗ -0.6217∗

(1.091) (1.954) (0.3895) (0.2904)

Fixed-effects
Issuer Yes Yes Yes Yes
year Yes Yes Yes Yes

Fit statistics
Observations 9,912 9,502 9,641 9,798
R2 0.44205 0.56682 0.17201 0.39251
Within R2 0.00827 0.00736 0.00212 0.00116

Clustered (Issuer & Date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the coefficients related to the event study regressions presented in Section 2.5 corresponding
to Figures 2.4, 2.5, 2.6, and 2.7. Negative, sizeable effects are found for cash and total debt over the treatment
period. Positive effects are found for payouts, which are statistically significant for 2021, 2022, and 2023.
Similarly, negative effects are found for investment, which are statistically significant for 2021, 2022, and
2023.
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2.9.2 Features

Variable Description
accrual Accruals/Average Assets
adv_sale Advertising Expenses/Sales
aftret_eq After-tax Return on Average Common Equity

aftret_equity After-tax Return on Total Stockholders Equity
aftret_invcapx After-tax Return on Invested Capital

at_turn Asset Turnover
capital_ratio Capitalization Ratio

cash_debt Cash Flow/Total Debt
cash_lt Cash Balance/Total Liabilities

cfm Cash Flow Margin
de_ratio Total Debt/Equity

debt_assets Total Debt (ltq)/Total Assets
debt_at Total Debt (dlcq+dlttq)/Total Assets

debt_capital Total Debt/Capital
debt_ebitda Total Debt/EBITDA
debt_invcap Long-term Debt/Invested Capital

equity_invcap Common Equity/Invested Capital
evm Enterprise Value Multiple
gpm Gross Profit Margin

gprof Gross Profit/Total Assets
lt_debt Long-term Debt/Total Liabilities
lt_ppent Total Liabilities/Total Tangible Assets

npm Net Profit Margin
opmad Operating Profit Margin After Depreciation
opmbd Operating Profit Margin Before Depreciation
pcf Price/Cash flow

pe_exi P/E (Diluted, Excl. EI)
pe_inc P/E (Diluted, Incl. EI)

pe_op_basic Price/Operating Earnings (Basic, Excl. EI)
pe_op_dil Price/Operating Earnings (Diluted, Excl. EI)

ps Price/Sales
ptpm Pre-tax Profit Margin

rd_sale Research and Development/Sales
roa Return on Assets
roce Return on Capital Employed

staff_sale Labor Expenses/Sales
totdebt_invcap Total Debt/Invested Capital

Table 2.10: Features with Less than One Percent Missing Observations
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Variable Description
bm Book/Market

capei Shillers Cyclically Adjusted P/E Ratio
cash_ratio Cash Ratio
curr_debt Current Liabilities/Total Liabilities
curr_ratio Current Ratio
dltt_be Long-term Debt/Book Equity
int_debt Interest/Average Long-term Debt
intcov After-tax Interest Coverage

intcov_ratio Interest Coverage Ratio
ocf_lct Operating CF/Current Liabilities
pay_turn Payables Turnover

peg_1yrforward Forward P/E to 1-year Growth (PEG) ratio
pretret_earnat Pre-tax Return on Total Earning Assets
pretret_noa Pre-tax return on Net Operating Assets
profit_lct Profit Before Depreciation/Current Liabilities

ptb Price/Book
quick_ratio Quick Ratio (Acid Test)
rect_act Receivables/Current Assets
rect_turn Receivables Turnover

roe Return on Equity
sale_equity Sales/Stockholders Equity
sale_invcap Sales/Invested Capital
short_debt Short-Term Debt/Total Debt

Table 2.11: Additional Features with Less than Ten Percent Missing Observations
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2.9.3 Base Effect Estimator Derivation

Set H(x, θ(x)) = α(x). Then, ∇θH =

[
1 0

]
.

Compute the inverse of Equation 2.6:

Λ(x)−1 =
1

p(x)(1− p(x))

 p(x) −p(x)

−p(x) 1


=

 1
1−p(x)

− 1
1−p(x)

− 1
1−p(x)

1
p(x)(1−p(x))


This gives:

(∇θH)Λ(x)−1 =

[
1 0

] 1
1−p(x)

− 1
1−p(x)

− 1
1−p(x)

1
p(x)(1−p(x))


=

[
1

1−p(x)
− 1

1−p(x)

]

Plug these in.

ψ(∆yhi , zi, xi, θ(xi)) = α(x)− (∇θH)Λ(x)−1lθ

= α(x)− (∇θH)Λ(x)−1

−

1
z

 (∆yh − α(x)− β(x)z)


= α(x) +

[
1

1−p(x)
− 1

1−p(x)

]1
z

 (∆yh − α(x)− β(x)z)

= α(x) +

(
1

1− p(x)
− z

1− p(x)

)
(∆yh − α(x)− β(x)z)

= α(x) +
(1− z)(∆yh − α(x)− β(x)z)

1− p(x)

= α(x) +
(1− z)(∆yh − α(x))

1− p(x)
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where the last line uses the fact that (1− z)z = 0.

2.9.4 ATE Estimator Derivation

Set H(x, θ(x)) = β(x). Then, ∇θH =

[
0 1

]
. The inverse of Equation 2.6 is the same as

in Appendix 2.9.3.

This gives:

(∇θH)Λ(x)−1 =

[
0 1

] 1
1−p(x)

− 1
1−p(x)

− 1
1−p(x)

1
p(x)(1−p(x))


=

[
− 1

1−p(x)
1

p(x)(1−p(x))

]

Plug these into Equation 2.5.

ψ(∆yhi , zi, xi, θ(xi)) = β(x)− (∇θH)Λ(x)−1lθ

= β(x)− (∇θH)Λ(x)−1

−

1
z

 (∆yh − α(x)− β(x)z)


= β(x) +

[
− 1

1−p(x)
1

p(x)(1−p(x))

]1
z

 (∆yh − α(x)− β(x)z)

= β(x) +

(
− 1

1− p(x)
+

z

p(x)(1− p(x))

)
(∆yh − α(x)− β(x)z)

= β(x) +
(z − p(x))(∆yh − α(x)− β(x)z)

p(x)(1− p(x))
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Add and subtract p(x)z to the numerator of the second term.

ψ(∆yhi , zi, xi, θ(xi)) = β(x) +
(z − p(x) + p(x)z − p(x)z)(∆yh − α(x)− β(x)z)

p(x)(1− p(x))

= β(x) +
[(1− p(x))z − p(x)(1− z)]∆yh − α(x)− β(x)z)

p(x)(1− p(x))

= β(x) +
(1− p(x))z(∆yh − α(x)− β(x)z)

p(x)(1− p(x))

− p(x)(1− z)(∆yh − α(x)− β(x)z)

p(x)(1− p(x))

= β(x) +
z(∆yh − α(x)− β(x)z)

p(x)
− (1− z)(∆yh − α(x)− β(x)z)

1− p(x)

= β(x) +
z(∆yh − α(x)− β(x)z)

p(x)
− (1− z)(∆yh − α(x))

1− p(x)

where the last line uses the fact that (1− z)z = 0.

2.9.5 ATET Estimator Derivation

Let c = 1 − z. Set H(x, θ(x)) = (α(x) + β(x))z − α(x)c. Then, ∇θH =

[
z − c z

]
. The

inverse of Equation 2.6 is the same as in Appendix 2.9.3.

This gives:

(∇θH)Λ(x)−1 =

[
z − c z

] 1
1−p(x)

− 1
1−p(x)

− 1
1−p(x)

1
p(x)(1−p(x))


=

[
z−c

1−p(x)
− z

1−p(x)
− z−c

1−p(x)
+ z

p(x)(1−p(x))

]
=

[
− c

1−p(x)
− (z−c)p(x)

p(x)(1−p(x))
+ z

p(x)(1−p(x))

]
=

[
− c

1−p(x)
cp(x)+(1−p(x))z
p(x)(1−p(x))

]
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Plug these into Equation 2.5.

ψ(∆yhi , zi, xi, θ(xi)) = (α(x) + β(x))z − α(x)c− (∇θH)Λ(x)−1lθ

= (α(x) + β(x))z − α(x)c− (∇θH)Λ(x)−1×−

1
z

 (∆yh − α(x)− β(x)z)


= (α(x) + β(x))z − α(x)c

+

[
− c

1−p(x)
cp(x)+(1−p(x))z
p(x)(1−p(x))

]1
z

 (∆yh − α(x)− β(x)z)

= (α(x) + β(x))z − α(x)c+

(
− p(x)

p(x)(1− p(x))
+

z

p(x)(1− p(x))

)
×

(∆yh − α(x)− β(x)z)

= (α(x) + β(x))z − α(x)c+
(z − p(x))(∆yh − α(x)− β(x)z)

p(x)(1− p(x))

Add and subtract p(x)z to the numerator of the second term, as in Section 2.9.4.

ψ(∆yhi , zi, xi, θ(xi)) = (α(x) + β(x))z − α(x)c+
z(∆yh − α(x)− β(x)z)

p(x)

− (1− z)(∆yh − α(x))

1− p(x)
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2.9.6 Deep Net Architectures

Feature History (Years)
1 5 10

Number of Features 333 1342 3204
Hidden Layer Architecture [300, 150, 75, [1500, 750, 375, [2700, 1350, 675, 300,

35, 15] 150, 75, 35, 15] 150, 75, 35, 15]
Dropout Rate 20%

Table 2.12: Architecture for Deep Nets with 1% Tolerance for Missing Observations

Feature History (Years)
1 5 10

Number of Features 517 2502 5314
Hidden Layer Architecture [500, 300, 150, [3000, 1500, 750, 375, [5000, 2700, 1350, 675,

75, 35, 15] 150, 75, 35, 15] 300, 150, 75, 35, 15]
Dropout Rate 20%

Table 2.13: Architecture for Deep Nets with 10% Tolerance for Missing Observations
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2.9.7 Base Effects

Table 2.14: Cash Base Effect

Difference in Cash Holdings Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 5.36 5.93*** 6.17*** 6.79*** 6.61*** 6.69***

(6.75) (1.59) (0.87) (0.99) (0.92) (0.94)
2021 8.76 8.16*** 11.70*** 12.42*** 12.65*** 13.30***

(6.35) (3.11) (3.85) (4.16) (3.92) (4.36)
2022 7.17 7.13*** 7.84*** 8.57*** 8.53*** 8.80***

(5.53) (2.52) (2.81) (3.06) (2.93) (3.13)
2023 6.30* 4.87*** 4.88*** 5.01*** 5.00*** 5.05***

(3.53) (1.73) (1.43) (1.43) (1.47) (1.37)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the change in cash holdings, as a percent of 2019Q4 assets. Results for
all model specifications are reported here; the corresponding architectures are reported in Tables 2.12 and
2.13 in the Appendix. The finding of large, positive base effects are largely consistent across different model
specifications, as well as the DiD regressions reported in Table 2.3.
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Table 2.15: Debt Base Effect

Difference in Total Debt Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 7.60 5.38*** 3.67*** 3.78*** 3.91*** 4.13***

(5.20) (1.81) (0.94) (1.00) (1.03) (1.06)
2021 18.21** 13.22*** 11.30*** 11.61*** 12.45*** 12.26***

(8.18) (3.19) (1.98) (2.17) (2.28) (2.28)
2022 26.91 21.19*** 15.74*** 17.03*** 17.08*** 16.94***

(16.46) (4.40) (2.49) (3.02) (2.93) (3.00)
2023 25.16** 19.45*** 16.57*** 17.89*** 17.27*** 17.57***

(12.64) (4.40) (2.61) (2.81) (2.72) (2.70)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the change in debt, as a percent of 2019Q4 assets. Results for all
model specifications are reported here; the corresponding architectures are reported in Tables 2.12 and 2.13
in the Appendix. The finding of large, positive base effects are largely consistent across different model
specifications, as well as the DiD regressions reported in Table 2.3.

Table 2.16: Payout Base Effect

Difference in Payout Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -0.17 -0.23** -0.17*** -0.16*** -0.18*** -0.18***

(0.20) (0.10) (0.04) (0.04) (0.04) (0.04)
2021 0.28 0.27 0.18 0.18 0.22 0.16

(0.70) (0.33) (0.19) (0.17) (0.18) (0.17)
2022 0.38 0.11 0.23** 0.29** 0.26* 0.25*

(0.44) (0.19) (0.11) (0.13) (0.14) (0.14)
2023 0.37 0.26* 0.27** 0.32*** 0.30** 0.29**

(0.28) (0.15) (0.11) (0.12) (0.12) (0.11)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the change in payouts with respect to 2019, scaled by 2019Q4 assets.
Results for all model specifications are reported here; the corresponding architectures are reported in Tables
2.12 and 2.13 in the Appendix. Generally consistent results are found whereby the base effect is initially
negative in 2020, null in 2021, and then positive in 2022 and 2023. This is in contrast to the null results
picked up by the DiD regressions reported in Table 2.4.
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Table 2.17: Investment Base Effect

Difference in CAPEX and R&D Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 0.17 0.14 -0.04 -0.02 -0.02 -0.02

(0.39) (0.16) (0.07) (0.07) (0.07) (0.07)
2021 0.95 0.98*** 0.66*** 0.71*** 0.73*** 0.71***

(0.75) (0.29) (0.11) (0.12) (0.12) (0.12)
2022 0.90 1.13*** 0.97*** 0.94*** 1.01*** 1.04***

(0.88) (0.36) (0.15) (0.15) (0.14) (0.14)
2023 1.65** 1.19*** 1.00*** 1.04*** 1.05*** 1.05***

(0.81) (0.32) (0.16) (0.17) (0.16) (0.16)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the difference in annual investment versus 2019, scaled by 2019Q4
assets. Results for all model specifications are reported here; the corresponding architectures are reported
in Tables 2.12 and 2.13 in the Appendix. Consistent with the positive coefficient found for the post period
in Table 2.4 for the DiD regressions, positive base effects are generally found. However, this is not robust
to an alternative proxy for investment. As seen in Table 2.30, proxying investment by the annual change in
gross property, plant, and equipment suggests a negative effect which reverts to null.
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2.9.8 Average Treatment Effects

Table 2.18: Cash ATE

Difference in Cash Holdings Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -10.77 -4.98 -3.55*** -3.38*** -2.98*** -3.19***

(16.50) (4.64) (1.06) (1.06) (1.00) (1.07)
2021 -1.97 -10.45** -10.11** -10.71** -10.50*** -11.03**

(19.83) (4.62) (4.13) (4.24) (4.06) (4.36)
2022 -14.65 -8.70** -6.57** -7.21** -7.61** -7.48**

(10.95) (3.51) (2.90) (2.86) (3.00) (3.02)
2023 -9.66 -5.85* -3.57** -3.90*** -3.42** -3.28**

(11.21) (3.08) (1.49) (1.51) (1.43) (1.36)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for the change in cash holdings, as a percent of 2019Q4 assets.
This corresponds to the estimator reported in Equation 2.9. Results for all model specifications are reported
here; the corresponding architectures are reported in Tables 2.12 and 2.13 in the Appendix. The results are
robust across model specifications, showing large, negative treatment effects. These are also consistent with
the DiD regressions reported in Table 2.3.
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Table 2.19: Debt ATE

Difference in Total Debt Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -15.73 -3.39 -1.24 -1.06 -0.69 -0.88

(15.44) (4.13) (1.35) (1.10) (1.10) (1.14)
2021 -46.26* -15.70** -5.78** -6.52*** -6.75*** -6.73***

(26.31) (7.28) (2.25) (2.23) (2.41) (2.35)
2022 -52.73* -21.93*** -9.28*** -9.90*** -9.48*** -9.85***

(27.60) (7.90) (2.82) (3.04) (3.09) (3.20)
2023 -40.13* -18.28*** -9.02*** -9.25*** -8.58*** -8.90***

(23.36) (5.66) (2.96) (2.93) (2.90) (2.89)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for change in total debt, as a percent of 2019Q4 assets. This
corresponds to the estimator reported in Equation 2.9. Results for all model specifications are reported here;
the corresponding architectures are reported in Tables 2.12 and 2.13 in the Appendix. The finding of an
initial null effect and subsequent large, negative effects are generally consistent across specifications. Table
2.6 compares the treatment effect estimates across different models and suggests that the results are broadly
in line.

117



Table 2.20: Payout ATE

Difference in Payout Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -1.02 -0.27 0.15** 0.15*** 0.13** 0.14***

(0.89) (0.29) (0.06) (0.05) (0.06) (0.06)
2021 -0.83 -0.16 0.23 0.25 0.23 0.31

(2.19) (0.97) (0.25) (0.25) (0.25) (0.23)
2022 -0.69 0.75 1.07*** 0.75*** 0.83*** 0.83***

(3.99) (1.48) (0.36) (0.27) (0.26) (0.28)
2023 -0.62 0.24 0.63*** 0.56*** 0.48*** 0.55***

(2.34) (0.87) (0.22) (0.22) (0.17) (0.16)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for the different in annual payouts versus 2019, as a per-
cent of 2019Q4 assets. This corresponds to the estimator reported in Equation 2.9. Results for all model
specifications are reported here; the corresponding architectures are reported in Tables 2.12 and 2.13 in the
Appendix. The model results are consistent across models using 5 and 10 years of feature history, showing
an initial positive effect in 2020 followed by a null effect in 2021 before returning to positive effects for 2022
and 2023. Table 2.7 compares the treatment effect estimates across different models. While the treatment
effects are comparable, the standard errors for the dynamic (heterogeneous) treatment effects are smaller.
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Table 2.21: Investment ATE

Difference in CAPEX and R&D Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -0.35 -0.26 -0.05 0.02 0.12 -0.01

(2.59) (0.57) (0.28) (0.20) (0.14) (0.11)
2021 -2.20 -0.86 0.05 0.11 -0.27 -0.40***

(2.26) (0.72) (0.48) (0.44) (0.23) (0.15)
2022 -4.05 -1.12 -0.43* -0.51** -0.49*** -0.66***

(3.86) (0.89) (0.23) (0.21) (0.18) (0.17)
2023 -1.62 -0.63 -0.26 -0.33 -0.33 -0.44**

(2.00) (0.78) (0.25) (0.21) (0.23) (0.19)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for the difference in annual investment versus 2019, scaled
by 2019Q4 assets. This corresponds to the estimator reported in Equation 2.9. Results for all model
specifications are reported here; the corresponding architectures are reported in Tables 2.12 and 2.13 in the
Appendix. Particularly for the models with longer covariate histories, null-to-negative treatment effects are
estimated. Table 2.8 compares the different treatment effects, showing that incorporating high-dimensional
controls and heterogeneity increases the point estimates for the dynamic effects. Additionally, when proxying
investment using the annual change in gross plants, property, and equipment, Table 2.31, null effects are
generally estimated across different models and cumulation horizons.
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2.9.9 ATE and ATET Comparison

Table 2.22: Cash Treatment Effect Comparison

Dynamic (Heterogeneous) Treatment Effect Comparison
Cash (% 2019Q4 Assets)

Year Average Treatment Effect ATE on Treated Difference
(1) (2) (1)-(2)

2020 -2.98 -3.96 0.98
(1.00) (1.03) (1.44)

2021 -10.50 -10.00 -0.50
(4.06) (4.18) (5.83)

2022 -7.61 -6.63 -0.98
(3.00) (3.07) (4.29)

2023 -3.42 -2.83 -0.59
(1.43) (1.47) (2.05)

Standard-errors in parentheses
The table compares the dynamic (heterogeneous) ATE and ATET estimates for cash, as a percent of 2019Q4,
for the model which uses 10 years of feature history and 1% tolerance for missing observations. The archi-
tecture for the model is given by Tables 2.12 and 2.13 in the Appendix. Section 2.9.4 and 2.9.9 derives the
IF estimator for the ATE and ATET, respectively. The estimates are comparable with the difference not
being statistically significant.
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Table 2.23: Debt Treatment Effect Comparison

Dynamic (Heterogeneous) Treatment Effect Comparison
Total Debt (% 2019Q4 Assets)

Year Average Treatment Effect ATE on Treated Difference
(1) (2) (1)-(2)

2020 -0.69 -1.54 0.86
(1.10) (1.12) (1.57)

2021 -6.75 -7.88 1.13
(2.41) (2.42) (3.42)

2022 -9.48 -10.47 0.98
(3.09) (3.03) (4.33)

2023 -8.58 -10.57 1.99
(2.90) (2.92) (4.11)

Standard-errors in parentheses
The table compares the dynamic (heterogeneous) ATE and ATET estimates for debt, as a percent of 2019Q4,
for the model which uses 10 years of feature history and 1% tolerance for missing observations. The archi-
tecture for the model is given by Tables 2.12 and 2.13 in the Appendix. Section 2.9.4 and 2.9.9 derives the
IF estimator for the ATE and ATET, respectively. The estimates are comparable with the difference not
being statistically significant.

Table 2.24: Payout Treatment Effect Comparison

Dynamic (Heterogeneous) Treatment Effect Comparison
Payout (% 2019Q4 Assets)

Year Average Treatment Effect ATE on Treated Difference
(1) (2) (1)-(2)

2020 0.13 0.10 0.03
(0.06) (0.05) (0.08)

2021 0.23 0.09 0.15
(0.25) (0.24) (0.34)

2022 0.83 0.49 0.35
(0.26) (0.27) (0.38)

2023 0.48 0.30 0.18
(0.17) (0.17) (0.24)

Standard-errors in parentheses
The table compares the dynamic (heterogeneous) ATE and ATET estimates for payout, as a percent of
2019Q4, for the model which uses 10 years of feature history and 1% tolerance for missing observations. The
architecture for the model is given by Tables 2.12 and 2.13 in the Appendix. Section 2.9.4 and 2.9.9 derives
the IF estimator for the ATE and ATET, respectively. The estimates are comparable with the difference not
being statistically significant.
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Table 2.25: Investment Treatment Effect Comparison

Dynamic (Heterogeneous) Treatment Effect Comparison
CAPEX and R&D (% 2019Q4 Assets)

Year Average Treatment Effect ATE on Treated Difference
(1) (2) (1)-(2)

2020 0.12 0.11 0.02
(0.14) (0.15) (0.20)

2021 -0.27 -0.21 -0.06
(0.23) (0.23) (0.33)

2022 -0.49 -0.51 0.02
(0.18) (0.19) (0.26)

2023 -0.33 -0.33 0.01
(0.23) (0.22) (0.31)

Standard-errors in parentheses
The table compares the dynamic (heterogeneous) ATE and ATET estimates for investment, as a percent of
2019Q4, for the model which uses 10 years of feature history and 1% tolerance for missing observations. The
architecture for the model is given by Tables 2.12 and 2.13 in the Appendix. Section 2.9.4 and 2.9.9 derives
the IF estimator for the ATE and ATET, respectively. The estimates are comparable with the difference not
being statistically significant.
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2.9.10 Counterfactual Treatment Effects

Table 2.26: Ineligible Firms’ Cash Counterfactual Treatment Effect

Difference in Cash Holdings Versus 2019 (% 2019Q4 Assets)
Counterfactual Group Average Treatment Effect Accounting for Heterogeneity - B-BB Rated

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -0.47 1.90 0.99 -2.95* -1.60 -4.36***

(7.74) (3.49) (1.62) (1.76) (1.43) (1.55)
2021 -2.06 2.95 -4.82 -4.30 -5.17 -9.13

(8.23) (6.01) (11.07) (9.69) (8.82) (9.74)
2022 2.17 -0.07 -3.69 -5.21 -4.24 -8.17

(11.00) (5.28) (8.48) (7.77) (7.19) (7.03)
2023 -3.95 -1.56 -2.71 -4.26 -3.60 -6.79**

(6.27) (3.38) (3.75) (3.92) (3.46) (3.26)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the counterfactual treatment effect for ineligible firms’ change in cash holdings, as a percent
of 2019Q4 assets. Results for all model specifications are reported here; the corresponding architectures
are reported in Tables 2.12 and 2.13 in the Appendix. Null effects are generally estimated across model
specifications and years.
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Table 2.27: Ineligible Firms’ Debt Counterfactual Treatment Effect

Difference in Total Debt Versus 2019 (% 2019Q4 Assets)
Counterfactual Group Average Treatment Effect Accounting for Heterogeneity - B-BB Rated

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 0.95 0.65 5.68*** 4.16*** 5.22*** 1.58

(11.04) (3.61) (1.52) (1.36) (1.30) (1.28)
2021 -2.74 -5.09 4.50 3.34 5.56** -2.41

(12.38) (5.55) (3.07) (2.72) (2.47) (2.53)
2022 -33.74 -8.01 -0.07 -2.29 1.62 -9.01**

(38.34) (11.28) (4.45) (4.13) (3.78) (3.70)
2023 -33.45 -7.59 -2.30 -2.08 -0.94 -11.80***

(28.67) (11.11) (5.28) (4.92) (4.49) (4.50)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the counterfactual treatment effect for ineligible firms’ change in total debt, as a percent
of 2019Q4 assets. Results for all model specifications are reported here; the corresponding architectures are
reported in Tables 2.12 and 2.13 in the Appendix. Positive effects are generally estimated for 2020 across
model specifications with at least 5 years of feature history. Combined with Table 2.28, this suggests that
had ineligible firms been eligible for direct cash bond support from the CCFs, they would have increased
debt, as well as payouts in 2020.
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Table 2.28: Ineligible Firms’ Payout Counterfactual Treatment Effect

Difference in Payout Versus 2019 (% 2019Q4 Assets)
Counterfactual Group Average Treatment Effect Accounting for Heterogeneity - B-BB Rated

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 0.47 0.44 0.34*** 0.30*** 0.31*** 0.27**

(0.48) (0.28) (0.12) (0.11) (0.11) (0.12)
2021 0.78 -0.21 0.07 -0.07 -0.09 -0.36

(1.76) (1.45) (0.61) (0.59) (0.56) (0.54)
2022 1.22 1.46*** 1.30*** 0.99*** 1.15*** 0.23

(0.87) (0.36) (0.22) (0.22) (0.23) (0.23)
2023 0.19 0.64 0.81*** 0.33 0.38 0.28

(0.76) (0.57) (0.28) (0.27) (0.28) (0.27)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the counterfactual treatment effect for ineligible firms’ annual payouts versus 2019, as a
percent of 2019Q4 assets. Results for all model specifications are reported here; the corresponding architec-
tures are reported in Tables 2.12 and 2.13 in the Appendix. Positive effects are generally estimated for 2020
and 2022 across model specifications with at least 5 years of feature history. Table 2.27 generally reports a
positive and statistically significant estimate for the counterfactual treatment effect for ineligible firms’ debt
in 2020 for model specifications with at least 5 years of feature history. Taken together, the results suggest
that had ineligible firms received direct cash bond support from the CCFs, they would have increased debt
and payouts in 2020, as well as increasing payouts in 2022.
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Table 2.29: Ineligible Firms’ Investment Counterfactual Treatment Effect

Difference in CAPEX and R&D Versus 2019 (% 2019Q4 Assets)
Counterfactual Group Average Treatment Effect Accounting for Heterogeneity - B-BB Rated

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 0.56 0.07 0.35*** 0.29*** 0.33*** 0.17

(1.10) (0.35) (0.12) (0.11) (0.10) (0.11)
2021 0.54 -0.05 0.43** 0.04 0.28 -0.20

(1.08) (0.39) (0.20) (0.17) (0.17) (0.18)
2022 -0.71 -0.61 0.24 -0.26 -0.02 -0.74***

(1.32) (0.84) (0.29) (0.26) (0.24) (0.25)
2023 -0.35 -0.14 0.18 -0.58* -0.11 -0.94***

(1.35) (0.68) (0.34) (0.31) (0.29) (0.30)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the counterfactual treatment effect for ineligible firms’ annual investment versus 2019,
as a percent of 2019Q4 assets. Results for all model specifications are reported here; the corresponding
architectures are reported in Tables 2.12 and 2.13 in the Appendix. Positive effects are generally estimated
for 2020 across model specifications with at least 5 years of feature history. However, an alternative proxy of
investment using the annual change in gross property, plant, and equipment suggests null effects, as reported
in Table 2.32.
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2.9.11 Alternative Investment Proxy: Change in Gross Property, Plant, and

Equipment

Figure 2.22: Base Effect for PPE Investment Proxy Negative Before Reverting to Null

The figure plots the base effects for the difference in annual investment versus 2019, scaled by 2019Q4 assets.
Investment here is proxied by the annual change in gross property, plant, and equipment, in contrast to
Figure 2.13 where investment is proxied by capital expenditures and R&D. The model above uses 10 years
of feature history and 1% tolerance for missing observations. Details on its architecture are reported in
Table 2.12 in the Appendix. Table 2.30 reports results across all model specifications. In contrast to the
null-to-positive effects found using the CAPEX and R&D proxy for investment, here there are negative base
effects are estimated for 2020 and 2021, which then become null for 2022 and 2023.
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Table 2.30: Base Effect for PPE Investment Proxy

Difference in Annual Change in Gross Plants, Property, and Equipment Versus 2019 (% 2019Q4 Assets)
Base Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -6.06 -4.96*** -5.07*** -5.24*** -5.17*** -5.08***

(5.56) (1.90) (1.06) (0.98) (1.06) (1.09)
2021 -2.96 -1.42 -2.66*** -2.50*** -2.31** -2.13**

(4.69) (1.91) (0.89) (0.85) (0.90) (0.91)
2022 -1.34 -2.23 -1.82* -1.97** -1.53 -1.36

(4.90) (1.87) (0.93) (0.92) (1.15) (1.10)
2023 0.38 -0.15 -0.28 -0.41 -0.14 0.09

(7.86) (2.43) (1.11) (1.05) (1.28) (1.29)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the base effects for the difference in annual investment versus 2019, scaled by 2019Q4 assets.
Investment here is proxied by the annual change in gross property, plant, and equipment, in contrast to Table
2.17 where investment is proxied by capital expenditures and R&D. Results for all model specifications are
reported here; the corresponding architectures are reported in Tables 2.12 and 2.13 in the Appendix. The
models produce relatively consistent results, with an initially negative base effect found for 2020 and 2021,
becomes null for 2022 and 2023. This is in contrast to the null-to-positive effects found using the CAPEX
and R&D proxy for investment.

Table 2.31: ATE for PPE Investment

Difference in Annual Change in Gross Plants, Property, and Equipment Versus 2019 (% 2019Q4 Assets)
Average Treatment Effect Accounting for Heterogeneity

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 44.60 14.26 0.05 -1.22 0.66 -0.37

(41.28) (11.73) (3.72) (2.39) (1.52) (2.26)
2021 92.38 17.16 0.28 -0.06 -1.15 -0.64

(74.92) (17.00) (2.13) (1.66) (1.49) (1.43)
2022 45.07 13.47 -0.36 0.25 -1.14 -1.73

(52.12) (10.41) (2.08) (1.82) (1.52) (1.48)
2023 28.49 11.64 0.67 0.38 -0.20 -0.79

(41.88) (12.27) (1.82) (1.73) (1.64) (1.62)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the average treatment effects for the difference in annual investment versus 2019, scaled by
2019Q4 assets. Investment here is proxied by the annual change in gross property, plant, and equipment, in
contrast to Table 2.21 where investment is proxied by capital expenditures and R&D. This corresponds to the
estimator reported in Equation 2.9. Results for all model specifications are reported here; the corresponding
architectures are reported in Tables 2.12 and 2.13 in the Appendix. Null effects are generally estimated
across different models and cumulation horizons. In contrast, the proxy for investment using CAPEX and
R&D indicates a negative treatment effect for 2022.
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Figure 2.23: ATE for PPE Investment Proxy Null

The figure plots the average treatment effects for the difference in annual investment versus 2019, scaled by
2019Q4 assets. Investment here is proxied by the annual change in gross property, plant, and equipment, in
contrast to Figure 2.17 where investment is proxied by capital expenditures and R&D. This corresponds to
the estimator reported in Equation 2.9. The model above uses 10 years of feature history and 1% tolerance
for missing observations. Details on its architecture are reported in Table 2.12 in the Appendix. Table 2.31
reports results across all model specifications, showing that null effects are estimated in every instance. In
contrast, the proxy for investment using CAPEX and R&D indicates a negative treatment effect for 2022.
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Figure 2.24: Null Estimates for Ineligible Firms’ Investment Counterfactual Treatment
Effects

The figure plots the counterfactual treatment effect for ineligible firms’ annual investment versus 2019, as
a percent of 2019Q4 assets, for the model using 10 years of feature history and 1% tolerance for missing
observations. Null effects are estimated for each year through 2023, although the point estimates are initially
positive. Table 2.32 shows that null effects are generally estimated across different model specifications.
Notably, the estimate for 2020 contrasts with the counterfactual treatment effect estimated when proxying
investment using CAPEX and R&D, as shown in Figure 2.18. In that case, a positive and statistically
significant effect is estimated for 2020.
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Table 2.32: Ineligible Firms Counterfactual Treatment Effect

Difference in Annual Change in Gross Plants, Property, and Equipment Versus 2019 (% 2019Q4 Assets)
Counterfactual Group Average Treatment Effect Accounting for Heterogeneity - B-BB Rated

Model
(Feature History, Missingness Tolerance)

Year (1,1) (1,10) (5,1) (5,10) (10,1) (10,10)
2020 -1.19 0.08 0.24 3.47 3.63 6.43***

(8.73) (4.00) (3.02) (2.49) (2.25) (2.30)
2021 0.06 -5.51 -1.05 0.69 0.82 2.19

(8.44) (4.55) (2.37) (1.90) (1.80) (1.81)
2022 -3.61 -1.09 -0.54 0.57 0.08 1.45

(9.69) (3.51) (2.03) (1.79) (1.73) (1.75)
2023 -1.59 -2.30 -0.36 0.31 -0.24 0.21

(11.92) (4.85) (2.50) (2.38) (2.20) (2.21)
Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table reports the counterfactual treatment effect for ineligible firms’ annual investment versus 2019,
as a percent of 2019Q4 assets. Results for all model specifications are reported here; the corresponding
architectures are reported in Tables 2.12 and 2.13 in the Appendix. The results generally suggest null effects
for investment. This contrasts with positive effects detected for the proxy of investment using CAPEX and
R&D in Table 2.29.
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CHAPTER 3

CENTRAL BANK CORPORATE BOND PURCHASE

PROGRAMS: COMMITMENT MATTERS

3.1 Introduction

Over the past decade, central banks have expanded their use of unconventional monetary

policy. Notably, they have shown a willingness to directly provide monetary stimulus to

risky non-financial corporations through the purchases of corporate bonds. The Euro-

pean Central Bank (ECB) launched the Corporate Sector Purchase Programme (CSPP) in

2016, while the Federal Reserve introduced the Corporate Credit Facilities (CCFs) in 2020.

The programs have been immensely successful in reducing the financing costs of targeted

firms.1

However, the substantial reduction in borrowing costs did not translate into relatively

greater investment, a key proxy of real activity, for firms directly targeted by these pro-

grams. In both Europe and the United States, firms directly benefiting from corporate

bond market stimulus increased leverage and increased payouts to shareholders relative

to other firms but did not relatively increase investment.2 Both the CSPP and CCF di-

rected stimulus to largely financially unconstrained firms rated investment-grade (IG).3

1. Papers documenting the financial effects of the CSPP include Abidi and Miquel-Flores [2018], Pego-

raro and Montagna [2025], Todorov [2020], and Zaghini [2019]. For the CCFs, papers include Boyarchenko,

Kovner, and Shachar [2022], D’Amico, Kurakula, and Lee [2020], Flanagan and Purnanandam [2020],

Gilchrist et al. [2021], Haddad, Moreira, and Muir [2021], Kargar et al. [2021], Momin and Li [2025],

O’Hara and Zhou [2021]

2. Papers documenting these dynamics in Europe include De Santis and Zaghini [2021], Grosse-

Rueschkamp, Steffen, and Streitz [2019], and Todorov [2020]. For the U.S., papers include Darmouni and

Siani [2024] and Momin [2025b].

3. Given that eligibility for either program requires the existence of a credit rating, and that the (lack
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Both programs were also de facto unsecured corporate bond interventions.4 Indeed, firms

in Europe titled their financing mix toward securities eligible for the CSPP and increased

the issuance of unsecured debt [Abidi and Miquel-Flores, 2018, Grosse-Rueschkamp, Stef-

fen, and Streitz, 2019, Pegoraro and Montagna, 2025, Todorov, 2020].

In this context, this paper is the first to explicitly connect the documented stylized facts

of firm dynamics following corporate bond intervention (increased leverage, relative in-

crease in payouts, relative lack of investment response) to the facility design itself (unse-

cured debt intervention in financially unconstrained firms). This paper rationalizes the

empirical patterns observed in the data in a dynamic capital structure model with in-

vestment, where firms have access to both equity and (unsecured and secured) debt fi-

nancing but cannot commit to a leverage policy ex ante, in the vein of Demarzo and He

[2021]. The model is numerically estimated with parameters taken from the literature and

is shown to fit key empirical moments. It is further used to show how (counterfactual) se-

cured debt intervention, rather than unsecured debt intervention, can induce a stronger in-

vestment response among financially unconstrained firms. To the extent that central banks

intervene in corporate debt markets to stimulate real activity, this is an important consid-

eration for policy design.5

of) availability of credit ratings is a common proxy for financial constraints (e.g. Whited [1992], Almeida,

Campello, and Weisbach [2004], Faulkender and Petersen [2006], Denis and Sibilkov [2010], Harford and

Uysal [2014]), an extreme argument would be that any intervention in corporate bonds would necessar-

ily direct stimulus to relatively unconstrained firms. Indeed, Greenwald, Krainer, and Paul [2023] make

precisely this modeling assumption.

4. Nearly all of the corporate bonds purchased by both the CSPP and CCF were senior unsecured debt

(over 95% for both programs). Detail on security-level CSPP purchases are available here: https://www.

ecb.europa.eu/mopo/implement/app/html/index.en.html#cspp. Equivalent data for the CCFs are

posted here: https://www.federalreserve.gov/monetarypolicy/smccf.htm.

5. Both the ECB and Fed emphasize how loosening financial conditions are expected to support real

activity in their announcements of corporate bond purchase programs. For the ECB’s announcement, see
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While the arguments presented in this paper are novel, the dynamics involving unse-

cured debt intervention are also present in the model of Crouzet and Tourre [2021], which

this paper builds on. Crouzet and Tourre [2021] extend the model of Demarzo and He

[2021] to feature investment, subject to convex adjustment costs, that follow ‘q-theory’ dy-

namics [Hayashi, 1982]. Hence, the investment rate is proportional to the marginal value

of equity with respect to capital. Without commitment, the firm cannot realize the tax

shield benefits of debt issuance. Bond investors anticipate the equilibrium leverage policy

of equity shareholders and price in higher default costs, exactly offsetting any gains to firm

value from the prescence of a debt tax shield.

Likewise, unsecured debt intervention results in accelerated debt issuance which is paid

out by the firm to shareholders, leaving the firm with higher leverage. Higher leverage,

and hence, bankruptcy costs, imply a lower continuation value. These two forces (higher

payouts and higher bankruptcy costs) cancel out to leave firm equity value, as well as

investment, unchanged.6 However, longer-run investment dynamics suffer due to higher

firm leverage (as implied by the lower continuation value).7 While stark, I emphasize this

mechanism as an explanation for the stylized firm dynamics seen in both Europe and the

United States following the introduction of corporate bond purchase programs.

I extend the model of Crouzet and Tourre [2021] to feature secured debt that is issued

subject to a non-state contingent collateral constraint, similar to Kiyotaki and Moore [1997].

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016D0016. For the Fed’s, see

https://www.federalreserve.gov/newsevents/pressreleases/monetary20200323b.htm.

6. DeMarzo, He, and Tourre [2023] document similar dynamics in the context of a risk-neutral

sovereign borrower and more patient international creditors.

7. This prediction also has some empirical support. Momin [2025b] finds that while firm leverage rose

following the introduction of the CCFs, investment rates have not exceeded their pre-pandemic levels

through 2023, in the case when investment is proxied as the change in gross property, plant, and equip-

ment (PP&E).
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Secured debt, unlike unsecured debt, induces commitment via this collateral constraint,

echoing the finding in Demarzo [2019]. I show that the value of the Lagrange multiplier

on the collateral constraint is precisely equal to the marginal value of the debt tax shield.

Intuitively, the firm can enjoy the benefits of the debt tax shield because the issuance of

fully collateralized secured debt is limited by the collateral constraint, which prevents the

firm from diluting creditors through excessive debt issuance, as was the case with unse-

cured debt issuance, given a lack of firm commitment to an ex ante debt policy.

Given that fully collateralized secured debt is risk-free, while firms benefit from the debt

tax shield, firms issue up to the collateral constraint, which thus binds. The result that

firms exhaust debt capacity is seemingly at odds with Rampini and Viswanathan [2010],

who model state-contingent collateral constraints and show that firms engage in risk man-

agement by maintaining financial slack for future states. Secured debt is also risk-free in

Rampini and Viswanathan [2010], but the key difference is that firms are subject to ad-

ditional financial constraints in the form of restrictions on equity issuance. In contrast, I

maintain the standard Leland [1994] assumptions in my baseline model that firms can ac-

cess both debt and equity markets, so long as its continuation value is non-negative. When

equity issuance constraints are removed from Rampini and Viswanathan [2010], I recover

the result that the collateral constraint binds for all states.8

Empirically, firms tapped credit lines, issued corporate bonds, and issued equity through

the COVID-19 pandemic.9 This supports the modeling choice to maintain the standard

Leland [1994] assumptions. However, this results in counterfactual dynamics for the col-

8. See Section 3.2.3 for the discussion and Section 3.6.5 in the Appendix for the proof.

9. Papers documenting credit line drawdowns include: Acharya and Steffen [2020], Darmouni and Siani

[2024], Greenwald, Krainer, and Paul [2023]. Similarly, for bond issuance: Becker and Benmelech [2021],

Boyarchenko, Kovner, and Shachar [2022], Darmouni and Siani [2024], Dutordoir et al. [2024], Halling, Yu,

and Zechner [2020], Hotchkiss, Nini, and Smith [2022]. And for equity issuance: Dutordoir et al. [2024],

Halling, Yu, and Zechner [2020], Hotchkiss, Nini, and Smith [2022]
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lateral constraint and secured debt issuance, where the collateral constraint always binds

and secured debt issuance is procyclical, absent intervention. Empirically, secured debt

issuance is countercyclical, with firms maintaining slack in the collateral constraint and

maintaining financial flexibility for ‘bad’ states as a form of insurance [Benmelech, Ku-

mar, and Rajan, 2022, 2024]. Ultimately, this translates into a more conservative modeling

choice that underestimates the efficacy of potential secured debt intervention, which other-

wise has more impact in economies with more freely available collateral.

Despite this, I find that secured debt intervention, which entails public lending against

collateral valued above market prices,10 boosts firm investment through direct and indirect

channels. First, secured debt intervention makes secured debt issuance more valuable, di-

rectly incentivizing the firm to invest and raise collateral to relax its collateral constraint.

Second, because secured debt issuance has implicit commitment, the firm is able to benefit

from greater proceeds from fully collateralized secured debt issuance, without increasing

default risk. This results in a higher equity value, as well as a higher value of Tobin’s q.

Since capital is perceived as more productive, investment indirectly increases, as well.

In terms of longer-term dynamics, secured debt intervention leads to higher expected av-

erage equity prices, debt prices, investment rates, and lower default rates, relative to the

case of no intervention and especially, compared to the case of unsecured debt interven-

tion. Since unsecured debt intervention accelerates debt issuance and leads firm to accu-

mulate leverage, the longer-term dynamics are actually more unfavorable compared to the

benchmark of no intervention. While secured debt intervention also leads to higher un-

secured debt issuance and payouts, the investment response is stronger over much of the

state space, while firms’ tolerate higher debt levels before defaulting, reinforcing the more

10. The nature of the secured debt intervention described here is analogous to the Bank Term Funding

Program (BTFP) administered by the Fed to provide loans to financial institutions against collateral val-

ued at par (hence, above market prices): https://www.federalreserve.gov/newsevents/pressrelease

s/files/monetary20240124a1.pdf.
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favorable default dynamics.

If firms could commit to covenants limiting issuance, they would benefit more from un-

secured debt intervention. However, I maintain the assumption that firms would not vol-

untarily agree to such covenants, consistent with the empirical behavior of IG issuers. In-

stead, this motivates studying unsecured debt intervention with payouts limited by div-

idend restrictions, which generates higher investment, higher unsecured debt prices, and

lower default rates. However, it induces firms to repurchase debt and also leads to lower

equity valuations. Restricting debt repurchases further improves investment dynamics

(though, it does not improve equity valuations) and firms choose not to issue unsecured

debt when they would have otherwise repurchased debt. All together, the numerical so-

lutions suggest firms would not voluntarily participate in an unsecured debt intervention

program with dividend restrictions.

This paper contributes to the extensive literature on the financial and real effects of cen-

tral bank corporate bond purchase programs referenced earlier in this section. To the best

of my knowledge, this is the first paper to connect the stylized empirical facts of the real

effects of these programs to the nature of the intervention itself (unsecured debt interven-

tion in financially unconstrained firms). It is also the first to suggest that secured debt

intervention, rather than unsecured debt intervention, would have improved investment

outcomes. Crouzet and Tourre [2021] take a broader view on corporate credit interventions

to include the Main Street Lending Program (MSLP) and Paycheck Protection Program

(PPP), which featured subsidized bank lending to smaller, generally non-rated firms. They

find that credit interventions can prevent inefficient firm restructurings during a credit

shock, quantitatively dominating longer-run drags on investment due to debt overhang.

Li and Li [2024] also broadly analyze corporate credit programs and highlight the poten-

tial negative long-run implications of rescuing low-quality firms that exacerbates future

intervention costs. Greenwald, Krainer, and Paul [2023] develop a structural corporate fi-
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nance model with bank term loans, credit lines, and corporate bonds. Interestingly, they

also find that corporate bond intervention generates higher corporate bond issuance by

the financially unconstrained firms that issue them, largely without generating additional

investment. However, they show that such an intervention can still indirectly stimulate in-

vestment by freeing up bank credit lines for more constrained firms.

This paper also contributes to the literature on dynamic capital structure models where

firms lack commitment to an ex ante debt issuance policy. Demarzo and He [2021] build

on the seminal work of Leland [1994] to show that firms cannot benefit from the debt tax

shield when they lack commitment, although firms still issue debt in equilibrium. De-

Marzo, He, and Tourre [2023] explore the ramifications of Demarzo and He [2021] in the

context of sovereign debt, while Crouzet and Tourre [2021] extends the model to include

continuous investment policies subject to convex adjustment costs. They structurally esti-

mate their model and show that the model-implied moments align well with key empirical

moments. I further extend Crouzet and Tourre [2021] to include both continuous invest-

ment subject to convex adjustment costs as well as secured debt11 and show that the nu-

merically estimated model delivers similar quantitative performance.

The third strand of literature this paper contributes to is on the effects of accommoda-

tive monetary policy on payouts.12 Elgouacem and Zago [2023] show empirically that

firms finance share buybacks by issuing corporate bonds. They find that accommodative

monetary policy increases buybacks. Acharya and Plantin [2025] also note that the in-

crease in firm payouts have occurred a low-yield environment where the corporate bond

market has significantly expanded, while investment has remained depressed. They ratio-

11. Demarzo [2019] first models secured debt in the context of Leland-type models without commit-

ment. There, investment opportunities arrive according to a Poisson process and do not follow q-theory

dynamics.

12. Other papers studying payouts financed through capital issuance include Farre-Mensa, Michaely, and

Schmalz [2024] and Ma [2019].
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nalize these dynamics in a parsimonious model featuring agency frictions and moral haz-

ard that arise due to the increasing relationship between investment returns and share-

holders’ costly private effort. Pazarbasi [2025] shows empirically that cash-rich firms have

higher equity payouts and finds that this can be explained in a New Keynesian model

where accommodative monetary policy reduces firms’ precautionary cash demand, trig-

gering payouts.

The rest of the paper is organized as follows. Section 3.2 sets up the model with short-

term secured debt. Section 3.3 explores crisis dynamics in the model. Section 3.4 presents

the numerical solution to the model. Section 3.5 concludes.

3.2 Model with Short-Term Secured Debt

3.2.1 Setup

In the baseline model with short-term secured debt, I assume shareholders and creditors

are risk-neutral with discount rate r. Shareholders have the option to default on both

unsecured and secured creditors at any point. At default, I assume shareholders and un-

secured creditors have zero recovery value, while secured creditors receive the collateral

backing their debt. Following the standard assumption in Leland models, equity investors

are deep-pocketed and can support the firm with liquidity injections. As a result, firms

can be viewed as financially unconstrained, given their ability to raise debt and equity to

finance operations, so long as its continuation value is positive.

Firms’ production technology, in revenue per unit of time, is given by:

Yt = AKt

where the productivity parameter A is deterministic. Capital, Kt, is measured in efficiency
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units and follows a geometric Brownian motion given by:

dKt

Kt
= (gt − δ)dt+ σdZt

where gt is the endogenous investment rate and δ is the capital depreciation rate, where

δ ∈ (0, 1). dZt is the increment of a Brownian motion and is distributed as dZt ∼ N(0, dt).

The price of capital is fixed at 1, as in Crouzet and Tourre [2021].

Shareholders choose a rate of investment, subject to a convex cost, parameterized as:

Φ(g) =
1

2
γg2

This parameterization of investment costs ensures investment is nonnegative in equilibrium

(and hence, capital is never liquidated). This is in contrast to Crouzet and Tourre [2021],

where the firm liquidates its capital at points over the state space (i.e. g < 0).13

The firm’s stock of unsecured debt has an aggregate face value Ft and is an endogenous

state variable. Unsecured debt matures at a Poisson rate mu and has a price pt. It is is-

sued at a face value equal to 1 with a coupon equal to the risk-free rate, cu = r. Given

potential default risk, pt ≤ 1. Unsecured debt stock evolves as:

dFt = −muFtdt︸ ︷︷ ︸
maturing debt

+ dΓut︸︷︷︸
active debt management

Following Demarzo and He [2021], I focus on a ‘smooth’ equilibrium where endogenous

13. The chief motivation for this modification is to ensure that long-term secured debt is risk-free in the

extension to the model examined in Section 3.6.3 of the Appendix, keeping the modeling tractable. With

instantaneously maturing ‘short-term’ secured debt, the level of the secured debt adjusts with capital liq-

uidation, so this parameterization is not critical. With long-term secured debt, capital liquidation would

cause initially fully collateralized debt to become under-collateralized, absent restrictions on the firm from

doing so.
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unsecured debt is assumed to be continuous. Hence, dΓut = Bu
t dt, where Bu

t is the endoge-

nous unsecured debt issuance policy.

Secured debt has an aggregate face value of St and is another endogenous state vari-

able. Short-term secured debt is assumed to mature instantaneously with maturity dt.

When issued at par with face value equal to 1 and paying a coupon equal to the risk-free

rate, cs = r, short-term secured debt is risk-free with price equal to 1.14 Let St− ≡

limdt↘0 St−dt be the value of secured debt issued at the instant before time t, then se-

cured debt evolves as dSt = St − St− ≡ Bs
t dt.

15

Additionally, I assume that the firm faces a non-state contingent collateral constraint

when issuing secured debt that is proportional to its capital stock:

St ≤ αKt

where α ∈ (0, 1) is the proportion of the capital stock pledgeable as collateral to secured

creditors.

14. In this setup, instantaneously maturing debt is risk-free so long as priced shocks to the in-

come/production process are continuous, which is the case when shocks are determined by increments

of a Brownian motion [DeMarzo, He, and Tourre, 2023, Hu, Varas, and Ying, 2024]. However, this is not

necessarily the case if there is priced jump risk [Abel, 2016, 2018, Hu, Varas, and Ying, 2024]. In the pres-

ence of jump risks, instantaneously maturity debt becomes risk-free if fully collateralized Abel [2018]. See

Section 3.2.3 for further discussion.

15. For the purpose of exposition, I initially treat short-term secured debt as a state variable; however,

I will show that its value will be a constant proportion of capital, consistent with Abel [2018] and Hu,

Varas, and Ying [2024].
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3.2.2 Equity’s Problem

Let θ equal the corporate tax rate. Then, equity’s flow payoffs are:

[
AKt︸︷︷︸

revenue

− θ(AKt − cuFt − csSt−)︸ ︷︷ ︸
corporate taxes

− Φ(gt)Kt︸ ︷︷ ︸
investment cost

− (cu +mu)Ft︸ ︷︷ ︸
unsecured debt interest & principal

+ ptB
u
t︸ ︷︷ ︸

unsecured debt net issuance

− cuSt︸︷︷︸
secured debt interest

+ Bs
t︸︷︷︸

secured debt net issuance

]
dt

Shareholders maximize the present discounted cash flows, taking unsecured debt price,

pt, as given, and choose policies for investment, unsecured debt issuance, secured debt is-

suance (subject to collateral constraint), and default time, τ . The sequence formulation of

the stochastic control and optimal stopping problem is:

J(K,F, S) = max
τ,g,Bu,Bs

E0

[ τ∫
0

exp(−rt)[AKt − θ(AKt − cuFt − csSt)− Φ(gt)Kt (3.1)

−(cu +mu)Ft + ptB
u
t − csSt +Bs

t ]dt

∣∣∣∣K0 = K,F0 = F, S0 = S

]
s.t.

dKt

Kt
= (gt − δ)dt+ σdZt

dFt = −muFtdt+Bu
t dt

dSt = Bs
t dt

St ≤ αKt

As noted by Abel [2018], the value of shareholders’ equity is given by J − S, where S is

the value of short-term debt. However, in solving for optimal policies, shareholders jointly

maximize the value of equity and short-term creditors because they immediately receive

142



the proceeds from the issuance of short-term debt.16

To show that the value function is homogeneous of degree 1 in K, note that capital is

given by:

Kt = K0 exp

(∫ t

0

(
gt − δ − 1

2σ
2
)
dt+

∫ t

0
σ dZt

)
.

Then, substitute this expression into the firm’s objective given by Equation (3.1) and fac-

tor out K0 = K. Rescale the state variables and controls by Kt:

ft ≡
Ft
Kt

, st ≡
St
Kt

, but ≡
Bu
t

Kt
, bst ≡

Bs
t

Kt
,

Under the change of measure dZt ≡ dZ̃t+σdt, the evolution of the state variables are given

by:

dft = [but − (gt − δ +mu)ftdt]− σftdZ̃t

dst = [bst − (gt − δ)]stdt− stσdZ̃t

Then, the rescaled value function is given by:

j(f, s) = max
τ,g,bu,bs

Ẽ0

[ τ∫
0

exp

(
−
(
r −

t∫
0

gsds+ δ

)
t

)
[A− θ(A− cuft − csst)− Φ(gt)

(3.2)

−(cu +mu)ft + ptb
u
t − csst + bst ]dt

∣∣∣∣f0 = f, s0 = s

]
16. See also Hu, Varas, and Ying [2024] for similar arguments.
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Such that:

dft = [but − (gt − δ +mu)ft]dt− ftσdZ̃t

dst = [bst − (gt − δ)st]dt− stσdZ̃t

st ≤ α

Consequently, the Hamilton-Jacobi-Bellman (HJB) equation characterizing equity’s

problem in the continuation region is given by:

0 = max
g,bu,bs

{
− (r − g + δ)j − (s− α)ls (3.3)

+A− θ(A− cuf − css)− Φ(g)− (cu +mu)f + pbu − css+ bs︸ ︷︷ ︸
cash flows per unit of capital

+[bu − (g − δ +mu)f ]jf +
1

2
σ2f2jff︸ ︷︷ ︸

evolution of unsecured debt per unit of capital

+[bs − (g − δ)s]js +
1

2
σ2s2jss︸ ︷︷ ︸

evolution of secured debt per unit of capital

}

where ls is the Lagrange multiplier on the collateral constraint.

Proposition 1 (Collateral Constraint Binds). The collateral constraint binds, and the

HJB equation becomes:

0 = max
g,bu

{
− (r − g + δ)j + A− θ(A− cuf − csα)− Φ(g)− (cu +mu)f + pbu − csα + α(g − δ)

+[bu − (g − δ +mu)f ]jf +
1

2
σ2f2jff

}
(3.4)

Proof. See Section 3.6.2 in the Appendix for the full derivation. The solution method can

be summarized as:
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1. Take derivative of equity’s HJB in continuation region with respect to secured debt

issuance policy → obtain equilibrium derivative conditions for equity value function.

2. Take derivative of HJB with respect to s and use equilibrium derivative conditions.

Obtain Lagrange multiplier on constraint.

3. Assuming Lagrange multiplier binds, substitute in value for s and use equilibrium

derivative conditions to obtain equity HJB reduced by 1 state variable and 1 control

variable.

Corollary 1 (Value of Commitment). The value of commitment, as suggested by the La-

grange multiplier, is equal to the marginal value of the debt tax shield (ls = θcs). That

is, relaxing the collateral constraint and allowing the firm to issue additional secured debt

generates additional tax shield benefits.

Proof. Follows from the proof of Proposition 1.

Equivalent results to Proposition 1 and Corollary 1 hold in the case when the firm can

issue long-term riskless secured debt, as shown in Appendix 3.6.3. That is, the collateral

constraint binds, and the value of the Lagrange multiplier equals the debt tax shield. How-

ever, modeling secured debt as instantaneously maturing simplifies the numerical solution

and discussion of the results.17

The ability of collateral to induce commitment, allowing the firm to enjoy the tax shield

benefits from issuing secured debt was first made by Demarzo [2019], in the context of

Leland-type models. This contrasts with the main finding in Demarzo and He [2021], that

absent commitment to an ex ante debt issuance policy, the firm cannot monetize the tax

17. Future extensions of this model can model risky, long-term secured debt where risk is driven by fluc-

tuating capital quality or capital prices.
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shield benefits from issuing unsecured debt, as shown in Section 3.2.5. This is because un-

secured creditors immediately discount the price of unsecured debt by the same value as

the debt tax shield, owing to the larger bankruptcy costs engendered by the additional is-

suance of risky, unsecured debt.

3.2.3 Discussion on Collateral Constraint and Financial Slack

I model collateral constraints in a non-state contingent fashion, as in Kiyotaki and Moore

[1997], and obtain a similar result that the collateral constraint binds when there is a mo-

tivation to trade, either due to a difference in discount rates or the presence of a debt tax

shield. In the models considered here, both short-term and long-term secured debt are

risk-free. As such, the marginal cost of issuing secured debt is zero, since there is no im-

pact from increased exposure to bankruptcy. At the same time, the marginal benefit is the

interest tax shield. As a result, firms issue up to their collateral constraint, completely ex-

hausting debt capacity.

Rampini and Viswanathan [2010] feature state-contingent debt and collateral constraints,

where firms also face non-negativity constraints on dividends. All agents in the model have

the same discount rate and there are no taxes. Firms can borrow in the current state by

issuing promises to pay in future states, subject to the collateral constraint, which ensures

that debt is risk-free. The benefit to issuing debt is the expected returns to investment in

the current and future period, while the cost is the expected return from conserving net

worth and increasing investment in certain future states. Consequently, the authors show

that latter may dominate, leading firms to maintain slack in the collateral constraint in

some states.

However, as shown in Appendix 3.6.5, when the Rampini and Viswanathan [2010] envi-

ronment is modified to allow dividends to be unconstrained, so that the firm can receive

cash infusions from equity investors, as is the case in the model presented in this section,
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and a debt tax shield is introduced, one recovers the result that collateral constraints bind,

even with state-contingency. Removing the nonnegativity constraints on dividends eases

the firm’s financial constraints. Since debt is risk-free, and the firm receives benefit from

the debt tax shield, the firm issues up to the collateral constraint.

Empirically, firms issued both corporate bonds, as well as, equity during the COVID-

19 pandemic.18 Moreover, as argued in Section 3.1, corporate bond purchase programs

generally directed monetary stimulus to relatively unconstrained firms (IG-rated firms).

All together, the standard assumptions of Leland-type models seem more appropriate.

As noted by Hu, Varas, and Ying [2024], unsecured short-term debt is risk-free when-

ever shocks to the firm’s earnings process is governed by an Itô process, as is the case

in the model presented in this section. Consequently, if firms have a motive to borrow

due to a difference in discount rates or a debt tax shield, they will exhaust the borrow-

ing capacity imposed by limited liability. To induce risky unsecured short-term debt, Abel

[2018] and Hu, Varas, and Ying [2024] introduce possible downward jumps in firm earn-

ings. With this modification, issuing unsecured short-term debt can expose the firm to

potential bankruptcy costs and so, the firm may choose to not exhaust its borrowing ca-

pacity. However, if short-term debt is fully collateralized, then it is risk-free even in the

presence of jumps, and the firm will exhaust its borrowing capacity.19

Empirically, secured debt issuance is countercyclical, with firms maintaining slack in the

18. Papers documenting record bond issuance include: Becker and Benmelech [2021], Boyarchenko,

Kovner, and Shachar [2022], Darmouni and Siani [2024], Dutordoir et al. [2024], Halling, Yu, and Zech-

ner [2020], Hotchkiss, Nini, and Smith [2022]. Papers documenting equity issuance, particularly for more

financially constrained firms, include: Dutordoir et al. [2024], Halling, Yu, and Zechner [2020], Hotchkiss,

Nini, and Smith [2022]

19. This can be seen in [Abel, 2018, p. 104] Equation (11) by setting the fraction of deadweight losses

from default, α, equal to zero. Then, the derivative of the trade-off function with respect to debt is equal

to the debt tax shield and strictly positive.
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collateral constraint, maintaining financial flexibility for ‘bad’ states as a form of insur-

ance [Benmelech, Kumar, and Rajan, 2022, 2024]. More realistic model dynamics would

necessitate generating a slack in the collateral constraint, which could be done by intro-

ducing frictions to collateralizing capital, issuing secured debt, etc. However, this would

imply a stronger response from secured debt intervention in the crisis period (characterized

in Section 3.3) as firms would enter this state with greater capacity to issue secured debt.

Indeed, a firm’s limited capacity to issue secured debt is precisely what disciplines and en-

ables it to benefit from secured debt intervention; in contrast, unsecured debt intervention

debt accelerates issuance to the point where any potential benefits are exactly offset by

higher bankruptcy costs incurred from greater indebtedness. Consequently, a more con-

servative and parsimonious modeling approach is followed where the collateral constraints

bind.

3.2.4 Unsecured Creditors’ Problem

Unsecured creditors take equity’s optimal policies as given and price unsecured debt ra-

tionally (i.e. anticipating future default). The price of 1 unit of unsecured debt with face

value 1 is given by:

p(K,F ) ≡ E0

 τ∫
0

exp(−(r +mu)t)(cu +mu)dt

∣∣∣∣K0 = K,F0 = F


s.t.

dKt

Kt
= (gt − δ)dt+ σdZt

dFt = −muFtdt+Bu
t dt

The unsecured debt price is homogeneous of degree zero in capital: p(1, F/K) = p(f).

Given the drift for dft, the HJB for the debt value function in the continuation region is
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given by:

(r +mu)p = cu +mu + [bu − (g +mu − δ − σ2)f ]pf +
1

2
σ2f2pff (3.5)

3.2.5 Optimal Policies

The first order condition for the HJB equation shown in Equation (3.4) with respect to g

yields:

Φ′(g) =j − fjf + α

g =
1

γ
(j − fjf + α)

Tobin’s q is given by the marginal derivative of J with respect to K (with the price of cap-

ital fixed at one):

q ≡ ∂KJ =
∂J(K,F )

∂K
=
∂(Kj(f = F/K))

∂K

= j(f)− fjf (f)

With a binding collateral constraint, collateralized borrowing provides a direct motivation

to invest in order to relax the collateral constraint. Hence, the ability to monetize a por-

tion of the capital stock through secured debt issuance increases optimal investment by a

factor proportional to α, relative to Tobin’s q.

Similarly, Abel [2016] finds that the availability of instantaneously maturity, short-term

bond financing boosts firm investment indirectly via increasing the joint value of equity

and short-term debt. In contrast, this channel is absent in Crouzet and Tourre [2021] who

only allow firms to issue unsecured debt. As shown below, absent commitment, firms do

not benefit from unsecured debt issuance.
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The FOC of equity’s problem with respect to bu:

p︸︷︷︸
MB of issuance

+ jf︸︷︷︸
MC on future value

= 0

This holds for all equilibria; in particular, it holds for the no-trade equilibrium where eq-

uity does not issue unsecured debt (i.e. bu = 0). The economic content of this result is

that the marginal benefit equity gains from issuing debt (the amount raised) is completely

offset by the marginal impact on equity due to higher unsecured debt levels. Stated oth-

erwise, lenders anticipate the firms issuance policy and price in higher default risk at is-

suance. Consequently, this allows one to solve for the equity value assuming no-trade.

Nonetheless, while equity value is unaffected by unsecured debt issuance, in equilibrium,

equity does issue unsecured debt, given the presence of the debt tax shield. Likewise, unse-

cured creditors require knowledge of this policy to accurately price unsecured debt; other-

wise, the equilibrium condition p = −jf does not hold.

To solve for the optimal issuance policy, first take the derivative of the HJB equation

characterizing equity’s problem without trade (setting bu = 0 in Equation (3.4) and using

the envelope theorem with respect to optimal investment):

(r − g + δ)jf =θcu − (cu +mu)− (g − δ +mu)jf − (g − δ +mu)fjff + σ2fjff

+
1

2
σ2f2jfff

⇒ (r +mu)jf =θcu − (cu +mu)− (g − δ +mu − σ2)fjff +
1

2
σ2f2jfff

Then, substitute in the equilibrium condition p = −jf into Equation (3.5):

−(r +mu)jf =cu +mu − [bu − (g +mu − δ − σ2)f ]jff − 1

2
σ2f2jfff
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Combine these two results and obtain the optimal unsecured debt issuance rate:

0 =θcu − bujff

⇒ bu =
θcu

jff
=

θcu

−pf
> 0

Given a strictly convex value function for equity (see Proposition 8 in the Appendix) and

short-term debt (jff > 0), unsecured debt issuance is strictly positive in the continuation

region (outside of default).

Taking the derivative of unsecured debt issuance policy with respect to f yields:

buf =
θcu

p2f
pff

Thus, the monotonicity of unsecured debt issuance depends on the convexity or concavity

of debt prices. If debt prices are convex, then unsecured debt issuance increases with lever-

age; if they are concave, it decreases. The convexity or concavity of debt prices depends on

the parameter values used in estimating the model.

3.3 Crisis Dynamics with Short-Term Debt

A crisis is modelled as an unforeseen shock which causes productivity, A, to drop to ηA,

where η < 1. The economy jumps back to its pre-shock equilibrium at the Poisson rate λ

so that the expected length of the crisis is 1/λ.

Additionally, let p∗s equal the exogenous price of 1 unit of short-term secured debt dur-

ing a crisis. If p∗s < 1, then this is equivalent to investors demanding a haircut when lend-

ing to firms against their collateral, similar to repo haircuts. Short-term secured debt is

issued at a premium if p∗s > 1, which may be the case in the event of intervention. Note

that absent an exogenous change in price, the endogenous price of short-term secured debt
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would still be risk-free with price equal to one.

Proposition 2 (Crisis HJB with Binding Constraint). The collateral constraint binds in a

crisis regime, if p∗s satisfies:
θr

1 + r + λ
> 1− p∗s (3.6)

That is, if the discounted value of the debt tax shield is greater than the haircut, the collat-

eral constraint binds.

Given p∗s so that the collateral constraint binds, the crisis joint equity and short-term

debt HJB in the continuation region is:

0 = max
bu,g

{
− (r − g + δ + λ)j + ηA− θ(ηA− cuf − csα)− Φ(g)

− (cu +mu)f + pbu − csα + α(p∗s − 1) + p∗sα(g − δ) + λj̄

+ [bu − (g +mu − δ)f ]jf +
1

2
σ2f2jff

} (3.7)

where j̄ is the pre-shock value of equity and short-term debt. Note that j̄ can be solved in-

dependently of j.

Proof. See Section 3.6.6 in the Appendix.

The first order condition with respect to g is:

0 =j − fjf − Φ′(g) + p∗sα

⇒ Φ′(g) =j − fjf + p∗sα

Thus, the exogenous price of secured debt directly impacts investment policy, while also

indirectly affecting it through changes in the value function and hence, q.

Additionally, note that the crisis HJB for unsecured debt price is given by:

(r +mu)p = cu +mu + [bu − (g +mu − δ − σ2)f ]pf +
1

2
σ2f2pff + λ(p̄− p) (3.8)
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where p̄ is the pre-shock unsecured debt price consistent with j̄.

3.3.1 Secured Debt Intervention

Proposition 3 (Secured Debt Intervention Strictly Increases Equity Value). Consider

an intervention in secured debt that results in an increase in the price of secured debt to a

level higher than before intervention, such that Equation 3.6 is satisfied. As a result, the

collateral constraint binds and there is a strict increase in both the joint value of equity and

short-term debt, and the value of equity.

Proof. See Section 3.6.7 in the Appendix.

Secured debt intervention is modeled as the central bank temporarily purchasing secured

debt at a premium relative to the prevailing market price for the duration of a crisis.20

Proposition 3 states that if such an intervention is sufficiently strong such that firms have

an incentive to issue secured debt (i.e. Proposition 2 holds), then both the joint value of

equity and short-term debt as well as just the value of equity are strictly increased. The

result is not surprising, since the firm receives more proceeds from secured debt issuance

when prices are higher, on the intensive margin, and on the extensive margin, sufficiently

high secured debt prices make issuance worthwhile for the firm. Given these results, se-

cured debt intervention is modeled as a premium offered above par in the numerical esti-

mation, for simplicity.

Proposition 4 (Secured Debt Intervention Strictly Increases Investment). Provided that

Proposition 3 holds, investment is strictly increasing in the amount of secured debt inter-

vention. Furthermore, the increase can be decomposed into direct and indirect channels.

20. The nature of the secured debt intervention described here is analogous to the Bank Term Funding

Program (BTFP) administered by the Fed to provide loans to financial institutions against collateral val-

ued at par (hence, above market prices): https://www.federalreserve.gov/newsevents/pressrelease

s/files/monetary20240124a1.pdf.
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• Direct Channel: Higher proceeds from secured debt issuance directly boost investment

by strengthening the motivation for the firm to investment and relax the collateral

constraint.

• Indirect Channel: Higher value of Tobin’s q, i.e. higher marginal value of capital,

indirectly boosts investment.

Proof. See Section 3.6.8 in the Appendix.

Proposition 4 states that secured debt intervention strictly increases investment. More-

over, the higher the premium offered in the intervention, the higher the increase in invest-

ment. Secured debt intervention increases investment directly and indirectly. First, by

making secured debt issuance more lucrative, intervention directly increases the motiva-

tion of the firm to invest and relax its collateral constraint. Second, secured debt inter-

vention increases the value of Tobin’s q, implying a higher marginal value of capital, thus

indirectly stimulating investment.

Firms are still permitted to issue unsecured debt at market prices when secured debt

intervention is operative. In the numerical results shown in Section 3.4, I find that firms

receiving secured debt intervention experience an indirect increase in unsecured debt prices

and increase both unsecured debt issuance and payouts. However, the investment response

is stronger over much of the state space, implying declining leverage ratios, while firms’

debt capacity (i.e. their default threshold) is further enhanced relative to the case without

intervention. These two forces together lead to more favorable default dynamics.

3.3.2 Unsecured Debt Intervention

As in Crouzet and Tourre [2021], I model an unsecured debt intervention as the govern-

ment becoming the marginal buyer in the unsecured debt market during a crisis period.
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This results in segmented equity and credit markets. Hence, we would have different dis-

count rates corresponding to equity investors, r(e), and unsecured debt investors, r(d).

Proposition 5 (Unsecured Debt Intervention Accelerates Issuance). In the case where un-

secured debt intervention segments equity and credit markets with the government becoming

the marginal buyer of debt, the endogenous unsecured debt issuance policy becomes:

bu =
θcu

−pf
+

(r(e) − r(d))p

−pf

and is increasing in the wedge between the discount rates of equity investors, r(e), and the

discount rate implied by the government’s subsidy, r(d). Unsecured debt intervention im-

plies r(d) < r(e) and hence, higher issuance in the continuation region since p is decreasing

in leverage and p > 0 outside of default.

Proof. See Section 3.6.9 in the Appendix.

The nature of the unsecured debt intervention considered in Proposition 5 leads to an

equilibrium increase in firms’ unsecured debt issuance, but does not imply a higher price

for unsecured debt. Indeed, the potential improvement in unsecured debt price implied by

government intervention at lower discount rates is exactly offset by accelerated issuance

which leaves unsecured debt price unchanged. This is a stark consequence of a lack of

commitment to ex ante debt policy. Empirically, debt issuance does not completely offset

the price impact of unsecured debt intervention, although it does accelerate significantly.

Proposition 6 (Unsecured Debt Intervention Accelerates Firm Payouts to Shareholders).

Proposition 5 shows that unsecured debt intervention accelerates the issuance of unsecured

debt, while the price of unsecured debt is unaffected due to the intervention. This results in

higher proceeds from unsecured debt issuance. Firms do not use these proceeds for invest-

ment but rather pay these out to shareholders. Higher payouts are exactly offset by a lower
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joint continuation value for equity and short-term debt due to higher default costs induced

by higher leverage.

Proof. See Section 3.6.10 in the Appendix.

Proposition 6 implies that unsecured debt intervention increases firm leverage and de-

faults, relative to non-intervention, a prediction which is verified in the numerical estima-

tion. While unsecured debt intervention does not affect the discounted equity price, since

higher payouts and higher default costs due to higher leverage are exactly offset, it does

imply negative dynamics for future investment.

If firms were able to commit to debt covenants limiting issuance, then more favorable

dynamics would materialize: payouts would fall and investment would improve. This echoes

the findings of DeMarzo, He, and Tourre [2023] in the sovereign debt context where re-

strictions on issuance lead to welfare improvements. Empirically, IG issuers have little to

no financial or operating covenants on their corporate bond debt [Deng et al., 2016].21

Hence, I maintain the assumption that firms would not voluntarily commit to such covenants.

Instead, I consider the case where unsecured debt intervention entails restrictions on firm

operations, similar to imposing covenants.

3.3.3 Dividend Restriction

An alternative method to induce commitment is the use of dividend restrictions which

prevents unsecured debt issuance from immediately being paid out as dividends. While

a permanent dividend restriction will cause equity price to fall to 0, a temporary dividend

restriction can be implemented during the crisis period while still maintaining positive eq-

uity prices. Given that unsecured debt intervention distorts firm incentives to accelerate

21. See also https://www.lexisnexis.com/community/insights/legal/practical-guidance-journ

al/b/pa/posts/high-yield-vs-investment-grade-covenants.
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issuance to increase payouts to shareholders, a natural question is whether this force can

be curtailed through the use of dividend restrictions, causing firms to increase investment

instead.

Proposition 7 (Optimal Policies with Dividend Restrictions). With dividend restrictions,

investment (g) and unsecured debt issuance policies (bu) satisfy:

π(bu, g) ≡ηA− θ(ηA− cuf − csα)− Φ(g)

− (cu +mu)f + pbu − csα + α(p∗s − 1) + p∗sα(g − δ) ≤ 0

(3.9)

Let l be the Lagrange multiplier on this constraint, where l ≥ 0, with equality when the

constraint is slack. Taking l as given, the crisis joint equity and short-term debt HJB with

a temporary dividend restriction is:

0 = max
bu,g

{
−(r−g+δ+λ)j+(1−l)π(bu, g)+λj̄+[bu−(g−δ+mu)f ]jf+

1

2
σ2f2jff

}
(3.10)

The expressions for unsecured debt price, unsecured debt issuance, and investment are

given by:

p = −
jf

1− l

g =
1

γ

(
j − fjf
1− l

+ p∗sα
)

bu = (1− l)
θcu

jff
+ l

λj̄f
jff

Proof. See Section 3.6.11 in the Appendix.

As a result of the dividend constraint, it is no longer the case that equity prices are

invariant to unsecured debt policy. Additionally, given l ∈ [0, 1), relative to the uncon-

strained case l = 0, unsecured debt price is higher, investment is higher, and unsecured
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debt issuance is lower. In particular, Section 3.6.11 in the Appendix shows that investment

is increasing in unsecured debt issuance when the dividend constraint binds.

Unlike before, it is possible that shareholders may wish to buy back debt when a divi-

dend constraint is in place. Consequently, deviations of unsecured debt management from

an unrestricted benchmark can be thought as having two drivers:

brest − bunrest = − l
θcu

jff︸︷︷︸
Reduced issuance motive

− l
λp̄

jff︸︷︷︸
Debt repurchase motive

Interpreting l as the value shareholders assign to relaxing the dividend constraint, the

more value shareholders assign to relaxing the constraint (and thereby being able to pay-

out dividends), the more intense is their motivation to reduce issuance and to even buy-

back debt. This decision can be pinned down by the following inequality:

(1− l)
θcu

jff
< l

λp̄

jff

⇒ θcu <
l

1− l
λp̄

That is, when the debt tax shield is below some threshold defined by shadow value of issu-

ing dividends and the jump probability weighted pre-crisis debt price, the firm will find it

beneficial to make net repurchases of unsecured debt.

Section 3.4.3 discusses the numerical results for models with dividend restrictions ac-

companying unsecured debt intervention, with and without debt repurchase restrictions.

As mentioned, the motivation is to see if firms will redirect the proceeds from unsecured

debt intervention to investment from payouts when dividend restrictions are in place. While

this does occur, the value of equity also falls. Moreover, firms engage in net repurchases

of unsecured debt and when repurchases are restricted, they choose not to issue at all.

Hence, while investment and default dynamics improve when unsecured debt intervention
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is combined with dividend restrictions, the numerical analysis suggests that firms may not

voluntarily participate in such a program.

3.4 Numerical Results

3.4.1 Model Calibration and Fit

Table 3.1: Calibrated Parameters

Parameter Description Value Source

γ Adjustment Cost Curvature 16 Caballero and Engel [1999]
A Capital Productivity 0.24 Crouzet and Tourre [2021]
α Capital Stock Pledgeability 0.20 Catherine et al. [2022]
σ Capital Quality Volatility 0.31 Crouzet and Tourre [2021]
θ Corporate Income Tax Rate 0.35 OECD [2020]
mu,ms Debt Amortization Rate 0.10 Saretto and Tookes [2013]
δ Depreciation Rate 0.10 Hennessy and Whited [2005]
r Risk-Free Rate 0.05 Crouzet and Eberly [2020]

The table reports the calibrated parameters used in the numerical solution of the model presented in Section 3.4. The
parameters are chosen to correspond with those used by Crouzet and Tourre [2021], with the exception of the curvature of the
capital adjustment cost function, γ, the proportion of the capital stock pledgeable as collateral, α, and the initial distribution
of debt to capital, f . Crouzet and Tourre [2021] estimate γ, the productivity of capital, A, and the volatility of capital quality,
σ, targeting the slope of investment with respect to (net) debt to EBITDA, the average investment rate, and the average (net)
debt to EBITDA as empirical moments for identification (see Table 3.2). The capital adjustment costs differ in this paper to
ensure that investment is non-negative in equilibrium, which simplifies the modeling of fully collateralized secured debt. The
selected value for γ lies in the range reported by Falato et al. [2022] of 2 to 20, matching the value of 16 estimated by Caballero
and Engel [1999]. The selected value for α corresponds to the lower-bound of the range (0.20 to 0.25) estimated by Catherine
et al. [2022]. This parameter is not present in Crouzet and Tourre [2021], since they do not model secured debt. The initial
distribution of debt to capital is shown in Figure 3.13. It is proxied by gross liabilities to assets taken from Compustat.

Table 3.1 reports the calibrated parameters used in the numerical solution of the model

reported in this section. The parameters are chosen to correspond with those used by

Crouzet and Tourre [2021], with the exception of the curvature of the capital adjustment

cost function, γ, the proportion of the capital stock pledgeable as collateral, α, and the

initial distribution of debt to capital, f . Crouzet and Tourre [2021] estimate γ, the pro-

ductivity of capital, A, and the volatility of capital quality, σ, targeting the slope of invest-

ment with respect to net debt to EBITDA, the average investment rate, and the average

net debt to EBITDA as empirical moments for identification (see Table 3.2).

The specification for capital adjustment costs differs in this paper to ensure that invest-
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ment is non-negative in equilibrium, which simplifies the modeling of fully collateralized

secured debt. The selected value for γ lies in the range reported by Falato et al. [2022]

of 2 to 20, matching the value of 16 estimated by Caballero and Engel [1999]. The se-

lected value for α corresponds to the lower-bound of the range (0.20 to 0.25) estimated by

Catherine et al. [2022]. This parameter is not present in Crouzet and Tourre [2021], since

they do not model secured debt.

The initial distribution of debt to capital is shown in Figure 3.13. It is proxied by gross

liabilities to assets taken from Compustat. The choice of initial distribution does not im-

pact the model solution but does affect the calculation of the model implied moments.

While Crouzet and Tourre [2021] target debt net of cash holdings for empirical moments,

initializing the model with the empirical distribution of net debt to capital would lead to

negative values for the state variable, which is ruled out by assumption and presents com-

plications (i.e. net lending by non-financial firms) that are out of scope for this paper.

Table 3.2 reports the implied moments from the model presented in this paper (column

corresponding to ‘Model’) and compares these against the empirical moments computed

by Crouzet and Tourre [2021] (‘Data’), as well as the moments implied by their model

(‘CT21’). Since Crouzet and Tourre [2021] target the average net debt to EBITDA, the

average investment rate, and the slope of investment with respect to net debt to EBITDA

in their estimation of parameters, these moments are particularly well-matched for their

model. Since this paper initializes the distribution of debt to capital with the empirical

gross leverage ratio, instead of net debt, the model implied moments are larger for debt to

EBITDA and inverse interest coverage ratio.

The default rate comes from S&P [2025] data for 2019. While the values are similar, the

model implied default rate is lower for this paper, despite higher starting debt levels. This

is consistent with secured debt enhancing overall debt capacity. Similarly, the model im-

plied average credit spreads are slightly lower in this paper than in Crouzet and Tourre
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Table 3.2: Model Fit

Description Source Data CT21 Model

Average Credit Spreads Feldhütter and Schaefer [2018] 0.87-4.17 4.98 4.76
Average Debt Issuance Rate Compustat 25.7 17.9 23.1
Average Debt to EBITDA Compustat 2.13 2.14 3.08
Average Equity Payout Rate Compustat 4.6 3.0 5.0
Average Inverse Interest Coverage Ratio Compustat 11.3 10.7 15.4
Average Investment Rate Compustat 11.28 11.28 9.55-16.88
Default Rate (2019) S&P [2025] 1.3 1.5 1.3
Slope of Inv. wrt Debt to EBITDA Compustat -1.04 -1.04 -1.15

The table reports the implied moments from the model presented in this paper (column corresponding to ‘Model’) and
compares these against the empirical moments computed by Crouzet and Tourre [2021] (‘Data’), as well as the moments implied
by their model (‘CT21’). Crouzet and Tourre [2021] estimate γ, the productivity of capital, A, and the volatility of capital
quality, σ, reported in Table 3.1, targeting the slope of investment with respect to debt-to-EBITDA, the average investment
rate, and the average debt-to-EBITDA as empirical moments for identification. As a result, the ‘Data’ and ‘CT21’ moments
closely match for these variables. Crouzet and Tourre [2021] reports empirical moment for debt to EBITDA for debt net of
cash. In contrast, this paper uses the initial debt to capital distribution for gross book leverage, to avoid negative net debt
values (see Figure 3.13). This results in higher model implied moments for debt to EBITDA and inverse interest coverage ratio.
The default rate comes from S&P [2025] data for 2019. While the values are similar, the model implied default rate is lower
for this paper, despite higher starting debt levels. This can be due to two forces: 1. firm restructuring, rather than liquidation,
after default, in Crouzet and Tourre [2021] and 2. secured debt enhancing overall debt capacity in this paper. Similarly, the
model implied average credit spreads are slightly lower in this paper than in Crouzet and Tourre [2021]. The empirical moments
for average credit spreads come from Feldhütter and Schaefer [2018] and cover the range of credit spreads for investment-grade
(IG) and high-yield (HY) firms. Crouzet and Tourre [2021] present investment rates gross of capital adjustment costs. The
range of investment rates with and without capital adjustment costs are reported for this paper; the interval contains both the
empirical and model moments reported by Crouzet and Tourre [2021]. Higher gross investment rates in this paper are driven
by the presence of secured debt which incentivizes higher investment to generate more pledgeable collateral. The moments for
average debt issuance, average equity payout rate, and the slope of investment with respect to debt to EBITDA are broadly
aligned across the three estimates.

[2021]. The empirical moments for average credit spreads come from Feldhütter and Schae-

fer [2018] and cover the range of credit spreads for investment-grade (IG) and high-yield

(HY) firms.

Crouzet and Tourre [2021] present investment rates gross of capital adjustment costs.

The range of investment rates with and without capital adjustment costs are reported

for this paper; the interval contains both the empirical and model moments reported by

Crouzet and Tourre [2021]. Higher gross investment rates in this paper are driven by the

presence of secured debt which incentivizes higher investment to generate more pledgeable

collateral. The moments for average debt issuance, average equity payout rate, and the

slope of investment with respect to debt to EBITDA are broadly aligned across the three

estimates.
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3.4.2 Numerically Solved Model and Dynamics

Section 3.6.13 in the Appendix presents the details for numerically solving equity and un-

secured debt prices in the model with short-term debt, as well as the model with dividend

restrictions. Additional parameters are reported in Section 3.6.14 in the Appendix across

the different economic environments considered for the model dynamics. As a preview of

the results, secured debt intervention leads to higher equity values and investment, rela-

tive to no intervention. In addition, it leads to more favorable firm dynamics with longer-

term improvements in investment and lower default rates. In contrast, while unsecured

debt intervention does not alter current equity values and investment, it does lead to worse

longer-term outcomes, driven by higher leverage and default rates among firms.

(a) Levels (b) Relative to No Shock

Figure 3.1: Secured Debt Intervention Boosts Equity Prices After Shock

I estimate both current prices and investment policies, as well as the dynamics. Figure

3.1 shows the joint value of equity and short-term debt for the different economies consid-

ered in the baselines analysis: prices with no shock, with shock but no secured debt inter-

vention, and with shock and secured debt intervention. Prices are unaffected by trading or

unsecured debt interventions. That is, the trade and no trade solutions for the joint value

162



of equity and short-term debt coincides. Consequently, secured debt intervention improves

the joint value of equity and short-term debt relative to both no intervention and unse-

cured debt intervention, as emphasized in Figure 3.1b.

Figure 3.2: Expected Equity Value Evolution Higher with Secured Debt Intervention

Figure 3.2 shows the long-run dynamics in average expected joint value of equity and

short-term debt. The evolution of joint values shows that the economy with secured debt

intervention dominates the economies with no intervention or unsecured debt intervention.

In fact, the evolution of expected joint values are worst with unsecured debt interventions,

reflecting the perverse effects induced by no commitment: unsecured debt intervention

boosts dividend payments exactly at the same rate as it accelerates the firms movement
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toward default.

(a) Levels (b) Relative to No Shock

Figure 3.3: Investment Rate Higher with Secured Debt Intervention

Consistent with Figure 3.3, we see that secured debt intervention boosts investment rel-

ative to no intervention (and hence, unsecured debt intervention) after an economy experi-

ences a shock.

The evolution of expected investment rates, shown in Figure 3.4, is analogous to that of

equity prices, with secured debt intervention resulting in a higher path of expected invest-

ment versus no intervention and, especially, unsecured debt intervention.

Unsecured debt prices are shown in Figure 3.5. In contrast to joint equity and short-

term debt prices, dispersion in unsecured debt prices is initially low for lower leverage and

increases closer to the default threshold. Given the parameter values used, debt prices are

concave and lead to monotonically decreasing issuance rates, as seen in Figure 3.6a. Fol-

lowing the shock, unsecured debt issuance falls for the cases with no intervention and se-

cured debt intervention but rises with unsecured debt intervention, as seen in Figure 3.6b.

As with equity prices, the evolution of unsecured debt prices is higher with secured debt

intervention than unsecured debt intervention, as seen in Figure 3.7. In fact, the economy

with unsecured debt intervention has lower future expected prices. This underscores how
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Figure 3.4: Evolution of of Expected Investment Rates Higher with Secured Debt Inter-
vention
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(a) Levels (b) Relative to No Shock

Figure 3.5: Unsecured Debt Prices Higher With Secured Debt Intervention for More
Leveraged Firms

(a) Levels (b) Relative to No Shock

Figure 3.6: Unsecured Debt Issuance Rate Higher with Intervention
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Figure 3.7: Secured Debt Intervention Boosts Unsecured Debt Price More Than Unsecured
Debt Intervention
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unsecured debt intervention may be counter-productive: firms increase debt issuance in re-

sponse to the government becoming the marginal buyer at lower discount rates, which in-

creases in default risk. The proceeds from accelerated debt issuance are paid out to share-

holders while firms indebtedness increases; these two forces exactly offset each other, such

that the unsecured debt price with unsecured debt intervention is unchanged from the no

trade unsecured debt price.

(a) Relative to No Intervention (b) Relative to No Intervention

Figure 3.8: Secured Debt Intervention Increases Unsecured Debt Issuance and Payouts

Figure 3.5 shows that secured debt intervention also boosts the price of unsecured debt,

while Figure 3.8 shows that, relative to no intervention, secured debt intervention leads

to higher unsecured debt issuance and payouts. Nonetheless, the increase in investment,

as shown in Figure 3.3, exceeds increased unsecured debt issuance over much of the state

space, implying decreasing leverage ratios. Additionally, secured debt intervention also in-

creases the debt tolerance of firms, as shown in Figure 3.9. While the default threshold de-

creases post-shock, the decrease is lower with secured debt intervention than no interven-

tion, as seen in in Figure 3.9b. This provides another benefit of secured debt intervention

in addition to directly boosting investment.

Consistent with higher default thresholds, cumulative default is lower with secured debt
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(a) Levels (b) Relative to No Shock

Figure 3.9: Secured Debt Intervention Pushes Back Default Threshold

intervention, as seen in Figure 3.10. Echoing the evolution of unsecured debt prices, unse-

cured debt intervention results in the greatest number of cumulative defaults, despite not

affecting the default threshold. Instead, unsecured debt intervention accelerates the path

to default by encouraging unsecured debt issuance.

Figure 3.11 depicts the long-run distribution of surviving firms. All of the distributions

are right-skewed because of the mean reverting nature of the dynamics, and the propor-

tionally slower rate of issuance for more indebted firms.

Figure 3.12 shows the CDFs of surviving firms. Unsecured debt intervention results in

a notable rightward shift in the CDF of surviving firms, suggesting that these firms have

higher levels of leverage. Figure 3.12b computes the difference between the CDF for the

economy where there is secured debt intervention versus the economy with no interven-

tion. The non-negative values indicate that the CDF for the economy with secured debt

intervention exhibits (weak) first order stochastic dominance over the corresponding distri-

bution for the economy with no intervention, as well as the economy with unsecured debt

intervention.
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Figure 3.10: Secured Debt Intervention Reduces Expected Cumulative Default Rates
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Figure 3.11: Secured Debt Intervention Supports Higher Leverage Ratios

(a) Levels (b) Relative to No Intervention

Figure 3.12: Secured Debt Intervention Distribution Features First Order Stochastic Dom-
inance Over Unsecured Debt Intervention
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3.4.3 Dividend and Debt Repurchase Restrictions with Unsecured Debt

Intervention

Section 3.6.13 in the Appendix provides details on the numerical solution method to solve

the extension to the baseline model with nonlinear policy constraints. I consider both div-

idend restrictions with and without a constraint on unsecured debt repurchases. Both

economies with dividend restrictions also feature unsecured debt intervention (see Sec-

tion 3.6.14 in the Appendix). Critically, the dividend restriction is only in place for the

duration of the crisis; otherwise, if it were permanent, equity prices would fall to zero as

shareholders would derive no value from owning equity.

Dividend restrictions lead to more beneficial investment outcomes, lower leverage, and

more favorable investment and default dynamics. Unlike before, unsecured debt prices are

also higher with intervention. However, they lead to lower equity prices and even create an

incentive for firms to repurchase unsecured debt. If debt repurchases are further restricted,

firms choose not to issue unsecured debt when they otherwise would have repurchased

debt. All together, the numerical solutions suggest firms would not voluntarily participate

in an unsecured debt intervention program with dividend restrictions.

3.5 Conclusion

Empirical research has shown that central bank corporate bond purchase programs in Eu-

rope and the United States led to an increase in leverage for directly targeted firms. The

payouts of these firms to shareholders increased relative to other firms, while investment

did not. A commonality of both programs is that they primarily involved interventions in

the unsecured debt of financially unconstrained firms. This paper shows that a dynamic

capital structure model where firms cannot commit to a debt issuance policy ex ante can

reproduce these stylized facts.
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Without commitment, firms accelerate the issuance of unsecured debt following inter-

vention. The additional proceeds are distributed to shareholders and are not used for in-

vestment. Higher firm payouts and higher leverage directly offset each other to leave the

firm’s current discounted equity valuation unchanged. However, the greater debt burden

translates into worse investment and default dynamics for firms. In contrast, secured debt

issuance features implicit commitment induced by the firm’s collateral constraint. While

the scope of secured debt intervention is far more limited, I show theoretically and nu-

merically that secured debt intervention can improve investment outcomes and default

dynamics for firms, both relative to the case of no intervention and especially the case of

unsecured debt intervention.

Imposing dividend restrictions while intervening in unsecured debt reduces the negative

impact of the lack of firms’ commitment to an ex ante debt policy, leading to higher unse-

cured debt prices, greater investment, and more favorable credit dynamics. However, divi-

dend restrictions also lead to a drop in firms’ equity valuation and actually induce firms to

repurchase unsecured debt. Restricting debt repurchases further increases investment but

does not improve equity valuation. These results suggest that firms would not voluntar-

ily participate in unsecured debt intervention programs with dividend restrictions, since it

would not be optimal from a valuation standpoint.

To the extent that central banks motivated their interventions by arguing real outcomes

would be improved from loosening financial conditions, the findings in this paper on the

improved dynamics generated by secured debt intervention, compared to unsecured debt

intervention, are important. However, this paper abstracts away from any potential moral

hazard induced by such credit programs. Nor does it address other concerns around direct-

ing monetary stimulus to relatively unconstrained and large firms, such as negative effects

on competitiveness or welfare implications. Policymakers will need to balance these con-

cerns against any potential benefits in future interventions in corporate credit markets.
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3.6 Appendix

3.6.1 Strict Convexity of the Joint Value Function

Proposition 8 (Strict Convexity of the Joint Value Function). Let j(f) denote the maxi-

mized joint value function of the firm given a debt to capital ratio f . Then, j(f) is strictly

convex in the continuation region (outside of default); that is, for any two feasible leverage

levels f1 and f2 and for any λ ∈ (0, 1), if we define

fλ = λf1 + (1− λ)f2,

we have

λj(f1) + (1− λ)j(f2) > j(fλ).

Proof. Let the firm’s optimized joint value function be given by j(f) with values j(f1) and

j(f2) for feasible leverage valeus f1 and f2. Consider the convex combination

fλ = λf1 + (1− λ)f2,

which is a feasible debt level by the continuity of j.

Since j(f1) and j(f2) represent optimized values, any deviation from the optimal poli-

cies cannot produce a higher value. That is, if the firm with leverage f1 deviates to fλ,

then

j(f1) > j(fλ) +
(
fλ − f1

)
p(fλ),

where p(fλ) is the price of unsecured debt given leverage fλ. Since fλ lies in the continua-

tion region, p(fλ) > 0. Then, (fλ − f1)p(fλ) is the incremental proceeds from deviating to
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fλ from f1. Analogously, a deviation from f2 gives

j(f2) > j(fλ) +
(
fλ − f2

)
p(fλ).

Take the weighted average of these two inequalities by multiplying the first by λ and the

second by (1− λ). Add the two together to obtain:

λj(f1) + (1− λ)j(f2) > λj(fλ) + λ(fλ − f1)p(fλ) + (1− λ)j(fλ) + (1− λ)(fλ − f2)p(fλ).

This simplifies to:

λj(f1) + (1− λ)j(f2) > j(fλ) + [λ(fλ − f1) + (1− λ)(fλ − f2)] p(fλ).

Note that by the definition of fλ,

λ(fλ − f1) + (1− λ)(fλ − f2) = 0.

Thus, the inequality reduces to:

λj(f1) + (1− λ)j(f2) > j(fλ).

Since the above inequality holds for any λ ∈ [0, 1] and any two feasible leverage levels f1

and f2, it follows by definition that the function j(f) is strictly convex in the continuation

region (outside of default).

3.6.2 Collateral Constraint with Short-Term Secured Debt

This section provides the proof for Proposition 1.
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Proof. Note that by the complementary slackness condition:

−ls(s− α) = 0, ls ≥ 0

That is, either the constraint binds, ls > 0, s = α, or there is slack, ls = 0, s < α.

To obtain equilibrium conditions on the derivatives of the value function, take the first

order condition with respect to bs and take successive derivatives to obtain:

js = −1

jss = 0

jsss = 0

jffs = 0

jfs = 0

To obtain the value for ps, take the first order condition of the HJB with respect to bu,

which yields p = −jf . Differentiating with respect to s and using the expression for jfs =

0 yields ps = 0. Intuitively, this follows because the issuance of secured short-term debt

does not entail additional bankruptcy costs.22

To obtain an expression for the Lagrange multiplier, ls, differentiate the HJB equation

with respect to s, appealing to the envelope condition for the controls and using the equi-

22. This contrasts with Hu, Varas, and Ying [2024] where unsecured short-term debt is exposed to de-

fault risk via jumps, and the firm has the ability to issue risky short-term debt.
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librium derivative conditions for j:

0 = −(r − g + δ)js − ls + θcs − cs − (g − δ)es

= (r − g + δ)− ls + θcs − cs + (g − δ)

⇒ ls = r − cs + θcs

Since cs = r, ls > 0, and the collateral constraint always binds.23

ls = θcs

Interpreting ls as the value of the collateral constraint, it is intuitively equal to the debt

tax shield when the coupon is set equal to the discount rate and the discount rate when

the coupon equals zero.

With s = α, and given the equilibrium derivative conditions, obtain:

0 = max
g,bu

{
− (r − g + δ)j + A− θ(A− cuf − csα)− Φ(g)− (cu +mu)f + pbu − csα

+α(g − δ) + [bu − (g − δ +mu)f ]jf +
1

2
σ2f2jff

}

Appendix 3.6.4 shows that this is the same HJB equation that is obtained if one starts by

assuming that the collateral constraint always binds before deriving the HJB equation.

23. Alternatively, if markets are segmented and lenders discount at a lower rate than borrowers, such

that cs = ρ > r, the collateral constraint still binds without the debt tax shield, i.e. θ = 0
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3.6.3 Collateral Constraint with Long-Term Secured Debt

As before, shareholders and creditors are risk-neutral with discount rate r. Shareholders

have the option to default on any security and at default, unsecured creditors have no re-

covery value while secured creditors receive the value of collateral. Equity investors are

deep-pocketed. Capital adjustment costs are parameterized so that investment is nonnega-

tive.

Firms’ production technology, in revenue per unit of time, is given by:

Yt = AtKt

The productivity parameter At evolves as:

dAt

At
= µdt+ σdZt

where µ is the constant rate of drift and dZt is the increment of a Brownian motion with

distribution given by dZt ∼ N(0, dt).

Capital Kt evolves as:

dKt

Kt
= (gt − δ)dt

where gt is the endogenous investment rate (the capital stock rate of growth) and δ is the

capital depreciation rate. The price of capital is fixed at 1. The absence of shocks to the

capital process renders it locally deterministic. This helps to simplify the pricing of long-

term secured debt.

Investing entails paying capital adjustment costs (per unit of capital), which are increas-
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ing and convex:

Φ(gt) =
1

2
γg2

where γ > 0 drives the cost of adjustment.

Unsecured debt has aggregate face value Ft and is endogenous. It matures at a Poisson

rate mu and hence, has expected maturity 1/mu. Individual bonds have face value equal

to 1 and pay coupon rate cu = r. Given default risk, unsecured debt is risky and pays

pt < 1. The evolution of unsecured debt stock is given by:

dFt = −muFtdt︸ ︷︷ ︸
maturing debt

+ dΓut︸︷︷︸
active debt management

I restrict my attention to the ‘smooth’ equilibrium where dΓut = Bu
t dt.

Firms can issue secured debt maturity at the rate ms = δ and coupon rate equal to cs =

r. The collateral constraint is St ≤ αKt, where St is the value of secured debt and α is the

proportion of the capital stock that can be pledged. Since the investment rate gt will be

non-negative (in equilibrium), the assumption that secured debt matures at the same rate

as capital depreciates, no shocks to the capital stock (so, capital is locally deterministic),

and because α is constant, secured debt will always be exactly collateralized. Hence, with

cs = r, secured debt is risk-free and issued at par equal to 1 for face value equal to 1. The

secured debt stock evolves as:

dSt = −msStdt︸ ︷︷ ︸
maturing debt

+ Bs
t dt︸ ︷︷ ︸

active debt management

Given constant corporate tax rate θ, firm pays θ(Yt − cuFt − csSt) in corporate taxes.
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Equity payout (Payoutt) equals:

AtKt︸ ︷︷ ︸
cash flows

− θ(AtKt − cuFt − csSt)︸ ︷︷ ︸
corporate taxes

− Φ(gt)Kt︸ ︷︷ ︸
investment cost

− (cu +mu)Ft︸ ︷︷ ︸
unsecured debt interest & principal

− (cs +ms)St︸ ︷︷ ︸
secured debt interest & principal

+ ptB
u
t︸ ︷︷ ︸

unsecured debt issuance/repurchase

+ Bs
t︸︷︷︸

secured debt issuance/repurchase

If positive, equity pays out dividends to investors. If negative, equity receives a cash infu-

sion from deep pocketed investors.

Shareholders take debt price pt as given and maximize:

E(A,K, F, S) = max
g,Bu,Bs,τ

E0

 τ∫
0

exp(−rt)(Payoutt)dt
∣∣∣∣A0 = A,K0 = K,F0 = F, S0 = S


dAt

At
= µdt+ σdZt

dKt

Kt
= (gt − δ)dt

dFt = (−muFt +Bu
t )dt

dSt = (−msSt +Bs
t )dt

St ≤ αKt

where τ is equity’s endogenous default time.

Observe that capital Kt satisfies:

Kt =K0 exp

 t∫
0

(g(s)− δ)ds


Then, we can show that the equity valuation equation is homogeneous of degree 1 in
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capital:

E(A,K, F, S) = max
g,Bu,Bs,τ

E0

 τ∫
0

exp(−rt)(Payoutt)dt
∣∣∣∣A0 = A,K0 = K,F0 = F


=K max

g,Bu,Bs,τ

{
E0

[ τ∫
0

exp

−
t∫

0

(r − gu + δ)du

×

(Payoutt/Kt)dt

∣∣∣∣A0 = A, f0 = f, s0 = 0

]}
=Ke(A, f, s)

where,

ft ≡ Ft/Kt

st ≡ St/Kt

but ≡ Bu
t /Kt

bst ≡ Bs
t /Kt

By applying Ito’s lemma to the new state variables f and s, obtain:

dft = (but − (gt +mu − δ)ft)dt

dst = (bst − (gt +ms − δ)st)dt
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Equity’s HJB in the continuation region is given by:

0 = max
g,bu,bs

{
− (r − g + δ)e(A, f, s)− l(s− α)

+A− θ(A− cuf − css)− Φ(g)− (cu +mu)f − (cs +ms)s+ p(A, f, s)bu + bs

+µAeA(A, f, s) +
1

2
σ2A2eAA(A, f, s)

+ [bu − (g +mu − δ)f ] ef (A, f, s)

+ [bs − (g +ms − δ)s] es(A, f, s)

}

where l is the Lagrange multiplier on the collateral constraint.

Taking the first order condition with respect to bs to obtain es and take additional deriva-

tives, as before.

es = −1

esA = 0

esAA = 0

efs = 0

ess = 0

To obtain the value for ps, differentiate the equity HJB with respect to bu and obtain

p = −ef . Differentiate again with respect to s and use efs = 0 to obtain ps = 0. As

with secured short-term debt, the impact on unsecured debt from the issuance of secured

debt is zero because secured debt is risk-free and its issuance does not incur additional

bankruptcy costs.

Differentiate the HJB equation with respect to s, using the envelope condition for the
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controls, and the values for the derivatives of e above to obtain:

0 = −l + θcs − (cs +ms) + (r − g + δ) + (g +ms − δ)

0 = −l + θcs + r − cs

⇒ l = θcs

Consequently, the collateral constraint binds, and the Lagrange multiplier on the collateral

constraint equals the debt tax shield.

3.6.4 Deriving Equity HJB By Assuming Collateral Constraint Always

Binds

Suppose that the collateral constraint binds, then St = αKt, and the problem can be re-

duced to two state variables, Ft and Kt. Given corporate taxes rates θ, the flow payoffs

are:

[
AKt︸︷︷︸

cash flows

− θ(AKt − cuFt)︸ ︷︷ ︸
corporate taxes

− Φ(gt)Kt︸ ︷︷ ︸
investment cost

− (cu +mu)Ft︸ ︷︷ ︸
unsecured debt interest & principal

+ ptBt︸︷︷︸
unsecured debt issuance/repurchase

]
dt

+ αdKt︸ ︷︷ ︸
secured debt net issuance

Shareholders take unsecured debt price as given and solve the optimal control problem

to maximize equity value, by choosing investment rate, unsecured debt issuance, and de-
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fault timing.

E(K,F ) = max
τ,g,B

E

[ τ∫
0

exp(−rt)[AKt − θ(AKt − cuFt)− Φ(gt)Kt − (cu +mu)Ft + ptBt]dt

+α

τ∫
0

exp(−rt)dKt

∣∣∣∣K0 = K,F0 = F

]

s.t.

dKt

Kt
= (gt − δ)dt+ σdZt

dFt = −muFtdt+Btdt

where τ is the optimal stopping time for equity to default on its secured and unsecured

debt obligations and cease operations.

The last term in the objective function captures the net cumulative proceeds from se-

cured debt operations. To simplify, substitute in the expression for dKt and then appeal

to the linearity of the expectations operator and apply the stochastic version of Fubini’s

Theorem24 to obtain:

E(K,F ) = max
τ,g,B

E

[ τ∫
0

exp(−rt)[AKt − θ(AKt − cuFt)− Φ(gt)Kt − (cu +mu)Ft + ptBt

+α(gt − δ)Kt]dt

∣∣∣∣K0 = K,F0 = F

]
s.t.

dKt

Kt
= (gt − δ)dt+ σdZt

dFt = −muFtdt+Btdt

Hence, for secured debt operations, shareholders need only consider the endogenous drift

24. By the optional stopping theorem, τ is almost surely bounded above and has a finite expectation.
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in the evolution of capital, which is determined by the investment and depreciation rates.

Let ft ≡ Ft/Kt and Bt ≡ Bt/Kt be rescaled variables per unit of capital. Notice:

Kt =K0 exp

( t∫
0

(gt − δ − 1

2
σ2)dt+

t∫
0

σdZt

)

Substitute in Kt to the objective function and factor out K0 = K to find that equity

value is homogeneous of degree 1 in capital (i.e. E(1, F/K) = Ke(f)). Further divide by

K and employ a change of measure dZt ≡ dZ̃t + σdt to obtain:

e(f) = max
τ,g,b

Ẽ

[ τ∫
0

exp

(
−
(
r −

t∫
0

gsds+ δ

)
t

)
[A− θ(A− cuft)− Φ(gt)− (cu +mu)ft + ptbt

+α(gt − δ)]dt

∣∣∣∣f0 = f

]
s.t.

dft = (bt − (gt − δ +mu)ft)dt− ftσdZ̃t

Hence, the recursive HJB formulation of the non-recursive problem in the continuation

region where the firm is in operation is given by:

0 =max
b,g

{
− (r − g + δ)e+ A− θ(A− cuf)− Φ(g)− (cu +mu)f + pb+ α(g − δ)

+ [b− (g − δ +mu)f ]ef +
1

2
σ2f2eff

}

3.6.5 Binding Collateral Constraints in Rampini and Viswanathan (2010)

In this section, I show that collateral constraints bind in the setup of Rampini and Viswanathan

[2010] with a debt tax shield on interest expenses and unconstrained dividends (where neg-

ative dividends represent inflows to the firm from equity investors). With unconstrained

dividends, the motive for the firm to conserve debt capacity is diminished. Issuing debt
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allows the firm to enjoy the benefit of the debt tax shield and since debt is risk-free, the

firm issues up to the collateral constraint. This holds even with state-contingent debt and

collateral constraints.

The firm maximizes the sum of discounted dividends over three periods (t = 0, 1, 2)

by choosing the value of state-contingent dividends (dt(s)) in each period, as well as, cap-

ital (kt(s)) and the issuance of debt (bt(s)) which matures in one period, where states

are denoted by s ∈ S. All agents are risk-neutral with discount factor β ∈ (0, 1), and

lenders price state-contingent debt competitively, such that, the interest rate on debt is

equal to the gross-risk free rate, R ≡ β−1 > 1. State-contingent debt is issued against

state-contingent collateral constraints: qt(s)θkt−1(s) ≥ Rbt(s), where qt(s) is the state-

contingent capital price and θ is the fraction of capital value that can be pledged as collat-

eral.

Capital has a nonnegativity constraint and is used for production in the period ahead,

such that, output is given by At(s)f(kt−1(s)), where f denotes the firms production tech-

nology and is scaled by a factor A. The firm pays taxes, τ > 0, on output less interest

expenses, where r ≡ R − 1 denotes the net interest rate. Finally, the firm is subject to

wealth constraints in each period and state, whereby the dividends, capital expenditures,

and debt servicing costs cannot exceed output and any new borrowing.

The firm’s problem is given by

max
b,d,k

(
d0 + βE[d1] + β2E[d2]

)

subject to constraints in period 0, 1, and 2.

Period 0 constraints:

w0 ≥ d0 + q0k0 − b1(s)

k0 ≥ 0
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where w0 is the given level of initial wealth.

Period 1 constraints:

q1(s)θk0 ≥ Rb1(s)

A1(s)f(k0) + q1(s)k0 − τ(A1(s)f(k0)− rb1(s)) ≥ d1(s) + q1(s)k1(s)− b2(s) +Rb1(s)

k1(s) ≥ 0

Period 2 constraints:

q2(s)θk1(s) ≥ Rb2(s)

A2(s)f(k1(s)) + q2(s)k1(s)− τ(A2(s)f(k1(s))− rb2(s)) ≥ d2(s) +Rb2(s)

k2(s) = 0

Denote by π(s) the probability of realizing state s. Let the multipliers on the wealth

constraints be µ0, π(s)µ1(s), and π(s)µ2(s). Similarly, let the multipliers on the collateral

constraints be π(s)λ1(s) and π(s)λ2(s). Finally, let the multipliers on the nonnegativity

constraints for capital be νk0 and π(s)νk1 (s). Then, the Lagrangian for the firm’s problem is

given by:

L = d0 + β
∑

π(s)d1(s) + β2
∑

π(s)d2(s)

−µ0(d0 + q0k0 −
∑

π(s)b1(s)− w0)

−
∑

π(s)µ1(s)(d1(s) + q1(s)k1(s)− b2(s) +Rb1(s)

−A1(s)f(k0)− q1(s)k0 + τ(A1(s)f(k0)− rb1(s)))

−
∑

π(s)µ2(s)(d2(s) +Rb2(s)− A2(s)f(k1(s))− q2(s)k1(s) + τ(A2(s)f(k1(s))− rb2(s)))

−
∑

π(s)λ1(s)(Rb1(s)− q1(s)θk0)

−
∑

π(s)λ2(s)(Rb2(s)− q2(s)θk1(s))

+νk0k0 +
∑

π(s)νk1 (s)k1(s)
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Computing the derivatives of the Lagrangian with respect to dividends yields:

µ0 = 1

µ1(s) = β, ∀s ∈ S

µ2(s) = β2,∀s ∈ S

And computing the derivatives of the Lagrangian with respect to debt yields:

µ0 = (R− τr)µ1(s) +Rλ1(s),∀s ∈ S

µ1(s) = (R− τr)µ2(s) +Rλ2(s),∀s ∈ S

Solving for λ1(s) and λ2(s) yields:

λ1(s) = τrβ2 > 0

λ2(s) = τrβ3 > 0

Hence, the Lagrange multipliers on the collateral constraints are proportional to the inter-

est tax shield and are strictly positive. This implies that the collateral constraints bind for

each time period and state.

3.6.6 Crisis Collateral Constraint in Model with Short-Term Secured Debt

This section provides the proof for Proposition 2.

Proof. The crisis HJB characterizing the joint value of equity and short-term debt in the
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continuation region is given by:

0 = max
bu,bs,g

{
− (r − g + δ + λ)j + ηA− θ(ηA− cuf − css)− Φ(g)

−(cu +mu)f + pbu − css+ p∗sb
s − (1− p∗s)s

+[bu − (g +mu − δ)f ]jf +
1

2
σ2f2jff

+[bs − (g − δ)s]js +
1

2
σ2s2jss

+λj̄ − ls(s− α)

}

where p∗s is the exogenous price of short-term secured debt and ls is the Lagrange multi-

plier on the constraint s ≤ α.

FOC with respect to bs:

0 = p∗s + js

⇒ js = −p∗s

⇒ jss = 0

⇒ jsf = 0

⇒ jsss = 0

To obtain ps, compute the FOC with respect to bu to obtain p = −jf . Then, differentiate

with respect to s and use jsf = 0 to conclude ps = 0.

Take FOC with respect to s, using envelope condition for controls, recalling j̄s = −1 and
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cs = r:

0 = −(r − g + δ + λ)js + θcs − cs − (1− p∗s)− (g − δ)js + λj̄s − ls

0 = (r − g + δ + λ)p∗s + θcs − cs − (1− p∗s) + (g − δ)p∗s − λ− ls

⇒ ls = rp∗s + λp∗s + θr − r − 1 + p∗s − λ

= p∗s(1 + r + λ) + θr − (1 + r + λ)

The collateral constraint binds when ls > 0, this occurs when:

p∗s(1 + r + λ) + θr − (1 + r + λ) > 0

p∗s +
θr

1 + r + λ
> 1

θr

1 + r + λ
> 1− p∗s

Assuming this holds, the collateral constraint binds and s = α. Plugging this back in and

using the equilibrium conditions for the derivatives of j gives:

0 = max
bu,g

{
− (r − g + δ + λ)j + ηA− θ(ηA− cuf − csα)− Φ(g)

−(cu +mu)f + pbu − csα + α(p∗s − 1) + p∗sα(g − δ) + λj̄

+[bu − (g +mu − δ)f ]jf +
1

2
σ2f2jff

}

In case the collateral condition does not bind, ls = 0, then the firm does not issue short-
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term debt and s = 0. The crisis HJB then becomes:

0 = max
bu,g

{
− (r − g + δ + λ)j + ηA− θ(ηA− cuf)− Φ(g)

−(cu +mu)f + pbu + λj̄

+[bu − (g +mu − δ)f ]jf +
1

2
σ2f2jff

}

3.6.7 Secured Debt Intervention Strictly Increases Value Function

This section provides the proof for Proposition 3.

Proof. Let bu(f, p∗s) and g(f, p∗s) denote the optimal policies for unsecured debt issuance

and investment when debt-to-capital is f and the exogenous price of secured debt is p∗s.

Let j(f, p∗s; p∗s′) be the joint value of equity and short-term debt when optimal policies are

given by the arguments (f, p∗s), but the proceeds of secured debt issuance are determined

by p∗s′. Moreover, the derivatives of j with respect to f are evaluated for the function j

when debt-to-capital is f and secured debt price is p∗s.

Secured debt intervention is identified as the case when p∗s′ is greater than p∗s. Assuming

that the collateral constraint binds at p∗s′, then we can simplify the proof that the value

function increases in intervention by assuming the collateral constraints also bind at p∗s.

If the collateral constraints do not bind at p∗s′, then by Equation 3.6, they also would not

bind at p∗s, and it is no longer the case that secured debt intervention increases the value

function.

The joint equity and short-term debt HJB during a crisis, given by Equation 3.7, can be
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restated as:

j(f, p∗s; p
∗
s) = max

bu,g

{
1

r − g + δ + λ

[
ηA− θ(ηA− cuf − csα)− Φ(g)

− (cu +mu)f + pbu − csα + α(p∗s − 1) + p∗sα(g − δ) + λj̄

+ [bu − (g +mu − δ)f ]jf +
1

2
σ2f2jff

]}
=

1

r − g(f, p∗s) + δ + λ

[
ηA− θ(ηA− cuf − csα)− Φ(g(f, p∗s))

− (cu +mu)f + pbu(f, p∗s)− csα + α(p∗s − 1) + p∗sα(g(f, p
∗
s)− δ) + λj̄

+ [bu(f, p∗s)− (g(f, p∗s) +mu − δ)f ]jf +
1

2
σ2f2jff

]

By construction, j(f, p∗s; p∗s′) ≤ j(f, p∗s
′; p∗s

′). Compare j(f, p∗s; p∗s′) and j(f, p∗s; p∗s),

where p∗s′ − p∗s > 0:

j(f, p∗s; p
∗
s
′)− j(f, p∗s; p

∗
s) ∝ α(p∗s

′ − 1)− α(p∗s − 1) + (p∗s
′ − p∗s)α(g(f, p

∗
s)− δ)

= α[(p∗s
′ − 1)− (p∗s − 1)] + (p∗s

′ − p∗s)α(g(f, p
∗
s)− δ)

= α(p∗s
′ − p∗s) + (p∗s

′ − p∗s)α(g(f, p
∗
s)− δ)

= (α(p∗s
′ − p∗s))(1 + g(f, p∗s)− δ)

Hence, the difference is the product of two terms. Since α ∈ (0, 1) and p∗s′ − p∗s > 0, the

first term is positive: α(p∗s′ − p∗s) > 0.

To determine the sign of the second term, first differentiate the investment policy func-

tion with respect to f yields gf (f, p∗s) = 1
γ (jf − fjff − jf ) = 1

γ (−fjff . By Proposition

8, j is strictly convex. Thus, jff > 0 and investment decreases as f increases, attaining a

minimum at the default threshold f̄ . In the default region, j(f̄) = 0 and jf (f̄) = 0. Thus,

the minimum value of investment is strictly positive: gmin = 1
γp

∗
sα > 0. Furthermore,

δ ∈ (0, 1), 1−δ > 0. Therefore, 1+g(f, p∗s)−δ > 0. Consequently, j(f, p∗s; p∗s′) > j(f, p∗s; p
∗
s).
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All together:

j(f, p∗s
′; p∗s

′) ≥ j(f, p∗s; p
∗
s
′) > j(f, p∗s; p

∗
s)

Hence, secured debt intervention, such that p∗s′−p∗s > 0, strictly increases the joint value

of equity and short-term debt. Since equity value is given by e = j − α, it is also the case

that:

e(f, p∗s
′; p∗s

′) ≥ e(f, p∗s; p
∗
s
′) > e(f, p∗s; p

∗
s)

Thus, secured debt intervention strictly increases the value of equity.

3.6.8 Secured Debt Intervention Boosts Investment Via Direct and Indirect

Channels

This section provides the proof for Proposition 4.

Proof. Following the notation in Appendix 3.6.7, the investment policy g(f, p∗s′) and g(f, p∗s)

are given by:

g(f, p∗s
′) =

1

γ
(j(f, p∗s

′; p∗s
′)− fjf (f, p

∗
s
′; p∗s

′) + p∗s
′α)

=
1

γ
(j(f, p∗s

′; p∗s
′) + fp(f, p∗s

′; p∗s
′) + p∗s

′α)

g(f, p∗s) =
1

γ
(j(f, p∗s; p

∗
s)− fjf (f, p

∗
s; p

∗
s) + p∗sα)

=
1

γ
(j(f, p∗s; p

∗
s) + fp(f, p∗s; p

∗
s) + p∗sα)

in the case where p∗s′ > p∗s, and the collateral constraints bind for both p∗s′ and p∗s. Note

that the optimality condition p = −jf , where p is the price of unsecured debt, is used in
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each case to restate the expressions.

The difference between the two policies can be expressed as:

g(f, p∗s
′)− g(f, p∗s) =

1

γ

(j(f, p∗s′; p∗s′) + fp(f, p∗s
′; p∗s

′) + p∗s
′α)

−(j(f, p∗s; p
∗
s) + fp(f, p∗s; p

∗
s) + p∗sα)



=
1

γ


j(f, p∗s

′; p∗s
′)− j(f, p∗s; p

∗
s) + f(p(f, p∗s

′; p∗s
′)− p(f, p∗s; p

∗
s))︸ ︷︷ ︸

indirect channel

+ (p∗s
′ − p∗s)α︸ ︷︷ ︸

direct channel


The change in investment can be decomposed into a direct channel and an indirect chan-

nel. Since γ > 0 and p∗s′ > p∗s, there is a direct increase to investment arising from greater

proceeds from secured debt issuance.

Indirectly, an increase in the joint value for equity and short-term debt and an increase

in the price of unsecured debt can lead to higher investment. To see this, first note that

by Proposition 3, as shown in Appendix 3.6.7, j(f, p∗s′; p∗s′) > j(f, p∗s; p
∗
s). Second, recall

that the price of unsecured debt, p, as defined in Section 3.2.4, is increasing in the default

time τ . Since j(f, p∗s′; p∗s′) > j(f, p∗s; p
∗
s), τ(f, p∗s′; p∗s′) ≥ τ(f, p∗s; p

∗
s) and so, p(f, p∗s′; p∗s′) −

p(f, p∗s; p
∗
s) ≥ 0. Equivalently, recalling the definition for Tobin’s q, we can conclude that

q(f, p∗s
′; p∗s

′) > q(f, p∗s; p
∗
s); that is, Tobin’s q is higher under secured debt intervention.

In sum, g(f, p∗s′) − g(f, p∗s) > 0 and investment is strictly increasing in secured debt

intervention. This increase can be decomposed into direct and indirect channels.

3.6.9 Segmented Markets in Model with Short-Term Secured Debt

This section provides the proof for Proposition 5.

Proof. First, we verify that changing unsecured debt issuance does not change the joint

equity and short-term debt value function. This can be seen from differentiating Equation
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(3.7) with respect to bu and obtaining the optimality condition p = −jf . Plugging this

into (3.7) shows that the value function is invariant to the choice of bu, although the equi-

librium values of bu are different in the case without and with unsecured debt intervention.

Given the above, differentiate the no-trade crisis state HJB equation for equity and

short-term debt, as characterized by Equation (3.7) with bu = 0, with respect to f and

where the discount rate is given by r(e), using the envelope condition for investment:

(r(e) − g∗ + δ + λ)jf = θcu − (cu +mu)− (g∗ +mu − δ)fjff − (g∗ +mu − δ)ef

+ σ2fjff +
1

2
σ2f2jfff + λēf

⇒ (r(e) +mu + λ)jf = θcu − (cu +mu)− (g∗ +mu − δ − σ2)fjff +
1

2
σ2f2jfff + λj̄f

Substitute in the first order condition for bu, p = −jf and p̄ = −j̄f , into the crisis HJB

equation for unsecured debt price, as in Equation (3.8), but priced with discount rate rd:

−(r(d) +mu + λ)jf = cu +mu − [bu − (g∗ +mu − δ − σ2)f ]jff − 1

2
σ2f2jfff − λj̄f

Add these two expression together:

(r(e) − r(d))jf = θcu − bujff

⇒ bu =
θcu

jff
−

(r(e) − r(d))jf
jff

3.6.10 Unsecured Debt Intervention and Joint Equity and Short-Term Debt

Value Function

This section provides the proof for Proposition 6.
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Proof. Appendix 3.6.9 verifies that the joint equity and short-term debt value functions

are invariant to unsecured debt issuance policy and derives the general expression for this

policy in segmented markets.

Without unsecured debt intervention, r(e) = r(d) and:

bno int =
θcu

jff

In the case of unsecured debt intervention, r(e) > r(d) and

bint =
θcu

jff
−

(r(e) − r(d))jf
jff

=
θcu

jff
+

(r(e) − r(d))p

jff

The difference between the issuance policies is given by:

bint − bno int =
(r(e) − r(d))p

jff
> 0

which is strictly positive in the continuation region because debt price p > 0 and j is con-

vex.

Given that j is invariant to issuance policy, the optimal investment policy is invariant

to issuance and is denoted as g∗(f). Let j(f ; bint) denote the value function given issuance

policy under unsecured debt intervention; similarly, denote j(f ; bno int). The difference be-

tween these two value function is equal to zero and given by:

j(f ; bint)− j(f ; bno int) ∝ pbint − pbno int +A(bint)j(f ; bint)−A(bno int)j(f ; bno int) = 0

where A is the infinitesimal generator of j, such that A(bu)j = [bu − (g + mu − δ)f ]jf +
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1
2σ

2f2jff is the continuation value of j. Rearranging, we have:

p(bint − bno int) = A(bno int)j(f ; bno int)−A(bint)j(f ; bint)

Since bint − bno int > 0 and p > 0 in the continuation region, the continuation value under

bno int is strictly greater than the continuation value under bint: A(bno int)j(f ; bno int) >

A(bint)j(f ; bint).

Consequently, unsecured debt intervention accelerates payouts immediately by stimulat-

ing greater issuance at the cost of a lower continuation value. This also suggests implica-

tions for the evolution of the distribution of firms over the state space, that is, the distri-

bution of firms’ unsecured debt-to-capital. Heuristically, a lower continuation value implies

higher levels of leverage, which in turn implies higher default rates. Numerical results con-

firm this conjecture.

3.6.11 Dividend Restriction in Model with Short-Term Secured Debt

This section provides the proof for Proposition 7.

Complementary Slackness Condition

• The complementary slackness condition corresponding to the constraint given by

Equation (3.9) and Lagrange multiplier l is:

lπ(bu, g) = 0

l ≥ 0, π(bu, g) ≤ 0
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Then,

π < 0 ⇒ l = 0

π = 0 ⇒ l > 0

Note:

πbu = p

πg = −Φ′(g) + p∗sα

πf = θcu − (cu +mu) + pf b
u

FOCs for Joint Equity and Short-Term Debt HJB

• Taking the Lagrange multiplier l as given, the control problem for shareholders be-

comes:

0 =max
bu,g

{
− (r − g + δ + λ)j + (1− l)π(bu, g) + λj̄ + [bu − (g − δ +mu)f ]jf +

1

2
σ2f2jff

}

• FOC w/r/t g:

0 = j − fjf + (1− l)πg

= j − fjf − (1− l)Φ′(g) + (1− l)p∗sα

⇒ Φ′(g) =
j − fjf
1− l

+ p∗sα

g =
1

γ

(
j − fjf
1− l

+ p∗sα
)
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• FOC w/r/t bu:

0 = jf + (1− l)πbu

−(1− l)πbu = jf

⇒ p = −
jf

1− l

⇒ l = 1 +
jf
p

Note:

pf = −
jff
1− l

pff = −
jfff
1− l

Optimal Issuance

• The crisis HJB for debt is:

(r +mu + λ)p =cu +mu + λp̄+ [b− (g +mu − δ − σ2)f ]pf +
1

2
σ2f2pff

• Substitute in the expression for p, pf , pff and p̄:

(r +mu + λ)

(
−

jf
1− l

)
= cu +mu − λj̄f + [bu − (g +mu − δ − σ2)f ]

(
−
jff
1− l

)
+

1

2
σ2f2

(
−
jfff
1− l

)
⇒ −(r +mu + λ)jf = (1− l)(cu +mu)− (1− l)λj̄f − bujff

+ (g +mu − δ − σ2)fjff − 1

2
σ2f2jfff
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• Take derivative of crisis equity HJB w/r/t f :

0 =− (r − g + δ + λ)jf + (1− l)πf + λj̄f

+ bujff − (g − δ +mu)jf − (g − δ +mu)fjff + σ2fjff +
1

2
σ2f2jfff

⇒ (r +mu + λ)jf = (1− l)πf + λj̄f + [bu − (g − δ +mu − σ2)f ]jff +
1

2
σ2f2jfff

= (1− l)(θcu − (cu +mu) + pf b
u) + λj̄f

+ [bu − (g − δ +mu − σ2)f ]jff +
1

2
σ2f2jfff

= (1− l)θcu − (1− l)(cu +mu)− jff b
u + λj̄f

+ [bu − (g − δ +mu − σ2)f ]jff +
1

2
σ2f2jfff

= (1− l)θcu − (1− l)(cu +mu) + λj̄f − (g − δ +mu − σ2)fjff

+
1

2
σ2f2jfff

• Add these two equations together:

0 = (1− l)θcu + lλj̄f − bujff

⇒ bu = (1− l)
θcu

jff
+ l

λj̄f
jff

= (1− l)
θcu

jff
− l

λp̄

jff
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Solution with Binding Constraint

• When constraint binds:

π(bu, g) = −1

2
γg2 + p∗sαg + ηA− θ(ηA− cuf − csα)− (cu +mu)f + pbu − csα

+ (p∗s − 1)α− p∗sαδ = 0

ζ(bu) ≡ ηA− θ(ηA− cuf − csα)− (cu +mu)f + pbu − csα + (p∗s − 1)α− p∗sαδ

⇒ g =
−p∗sα−

√
(p∗sα)2 + 2γζ(b)

−γ

=
p∗sα +

√
(p∗sα)2 + 2γζ(b)

γ

• Investment increases in unsecured debt issuance:

∂g

∂bu
=

1

γ

1

2
((p∗sα)

2 + 2γζ(bu))−1/2(2γ)ζ ′(bu)

=
p√

(p∗sα)2 + 2γζ(bu)

• Ensuring that investment is non-negative requires ζ(bu) ≥ 0:

0 ≤ζ(bu)

≤ηA− θ(ηA− cuf − csα)− (cu +mu)f + pbu − csα + (p∗s − 1)α− p∗sαδ

⇒ bu ≥− 1

p
(ηA− θ(ηA− cuf − csα)− (cu +mu)f − csα + (p∗s − 1)α− p∗sαδ)

• I also consider a restriction on unsecured debt repurchases while the dividend restric-

tion is in place (i.e. bu ≥ 0). This ensures strictly positive investment.
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3.6.12 Dividend Restriction and Unsecured Debt Repurchase Restriction in

Model with Short-Term Secured Debt

Let l1 be the Lagrange multiplier on the dividend constraint Equation (3.9) and l2 be the

Lagrange multiplier on the unsecured debt issuance constraint: bu ≥ 0.

Then, the complementary complementary slackness condition for the dividend constraint

is:

l1π(b
u, g) = 0

l1 ≥ 0, π(bu, g) ≤ 0

and the complementary slackness condition for the unsecured debt issuance constraint is:

−l2bu = 0

l2 ≥ 0,−bu ≤ 0

Using the Lagrange multipliers, l1 and l2, the control problem in the continuation region

can be express as:

0 =max
bu,g

{
− (r − g + δ + λ)j + (1− l1)π(b

u, g) + l2b
u + λj̄ + [bu − (g − δ +mu)f ]jf

+
1

2
σ2f2jff

}
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The FOC with respect to optimal investment, g, is:

0 = j − fjf + (1− l1)πg

= j − fjf − (1− l1)Φ
′(g) + (1− l1)p

∗
sα

⇒ Φ′(g) =
j − fjf
1− l1

+ p∗sα

g =
1

γ

(
j − fjf
1− l1

+ p∗sα
)

An expression for l1 can be obtained in terms of g:

gγ =
j − fjf
1− l1

+ p∗sα

gγ(1− l1) = j − fjf + (1− l1)p
∗
sα

l1(p
∗
sα− gγ) = j − fjf + p∗sα− gγ

l1 = 1 +
j − fjf
p∗sα− gγ

The FOC with respect to optimal unsecured debt issuance, bu, is:

0 = jf + (1− l1)πbu + l2

−(1− l)πbu = jf + l2

⇒ p = −
jf + l2

1− l1

⇒ l1 = 1 +
jf + l2

p

If the dividend constraint binds, l1 > 0, then:

0 < p+ jf + l2

−p− jf < l2
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If the dividend constraint doesn’t bind, l1 = 0, then:

0 = p+ jf + l2

Note:

pf = −
jff

1− l1

pff = −
jfff
1− l1

The crisis HJB for debt is:

(r +mu + λ)p =cu +mu + λp̄+ [bu − (g +mu − δ − σ2)f ]pf +
1

2
σ2f2pff

Substitute in the expression for p, pf , pff and p̄:

(r +mu + λ)

(
−
jf + l2

1− l1

)
= cu +mu − λj̄f + [bu − (g +mu − δ − σ2)f ]

(
−

jff
1− l1

)
+

1

2
σ2f2

(
−
jfff
1− l1

)
⇒ −(r +mu + λ)(jf + l2) = (1− l1)(c

u +mu)− (1− l1)λj̄f

− bujff + (g +mu − δ − σ2)fjff − 1

2
σ2f2jfff
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Take derivative of crisis equity HJB w/r/t f :

0 =− (r − g + δ + λ)jf + (1− l1)πf + λj̄f

+ bujff − (g − δ +mu)jf − (g − δ +mu)fjff + σ2fjff +
1

2
σ2f2jfff

⇒ (r +mu + λ)jf = (1− l1)πf + λj̄f + [bu − (g − δ +mu − σ2)f ]jff +
1

2
σ2f2jfff

= (1− l1)(θc
u − (cu +mu) + pf b

u) + λj̄f

+ [bu − (g − δ +mu − σ2)f ]jff +
1

2
σ2f2jfff

= (1− l1)θc
u − (1− l1)(c

u +mu)− jff b
u + λj̄f

+ [bu − (g − δ +mu − σ2)f ]jff +
1

2
σ2f2jfff

= (1− l1)θc
u − (1− l1)(c

u +mu) + λj̄f − (g − δ +mu − σ2)fjff

+
1

2
σ2f2jfff

Add these two equations together:

−l2(r +mu + λ) = (1− l1)θc
u + l1λj̄f − bujff

⇒ bu = (1− l1)
θcu

jff
+ l1

λj̄f
jff

+ l2
r +mu + λ

jff

= (1− l1)
θcu

jff
− l1

λp̄

jff
+ l2

r +mu + λ

jff

When the debt repurchase restriction binds, bu = 0 and:

l2
r +mu + λ

jff
= l1

λp̄

jff
− (1− l1)

θcu

jff

l2 = l1
λp̄

r +mu + λ
− (1− l1)

θcu

r +mu + λ
≥ 0
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3.6.13 Numerical Solution for Model with Short-Term Debt

• Endogenous state f : ∆f : {f1, . . . , fI}, where:

f1 = fi−1 +∆f = f1 + (i− 1)∆f

for 2 ≤ i ≤ I, where f1 = 0. Policy on boundary such that process obeys the state

constraint.

Solution with No-Trade

Discrete Dynamics of Endogenous State Variable

• Drift for endogenous state f : ι(fi) = −(g(fi) + mu − δ)fi = −( 1γ (ji − f∂ji + α) +

mu − δ)fi.

• Forward approximation for ∂F ji:

∂F ji ≡
ji+1 − ji

∆f

• Backward approximation for ∂Bji:

∂Bji ≡
ji − ji−1

∆f

• Second derivative (central):

∂2j(f)

∂f2
≈ ∂ff ji ≡

ji+1 + ji−1 − 2ji
(∆f)2

• Choice of approximation depends on sign of ιi (per upwind scheme):
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– ιi,F = −( 1γ (ji − fi∂F ji + α) +mu − δ)fi > 0 ⇒ gi =
1
γ (ji − fi∂F ji + α).

– ιi,B = −( 1γ (ji − fi∂Bji + α) +mu − δ)fi < 0 ⇒ gi =
1
γ (ji − fi∂Bji + α).

– ιi = −( 1γ (ji − fi∂Bji + α) +mu − δ)fi = 0 ⇒ gi = −mu + δ.

Discretized HJB Equation

• Let Ψn
i = A− θ(A− cufi − csα)− Φ(gni )− (cu +mu)fi − csα + α(gni − δ).

• Given time step ∆, the discretized HJB equation in the continuation is given by:

jn+1
i − jni

∆
+ (r − gni + δ)jn+1

i =Ψn
i + ιni,F1ιni,F>0∂F j

n+1
i + ιni,B1ιni,B<0∂Bj

n+1
i

+
1

2
σ2f2i jff

=Ψn
i + ιni,F1ιni,F>0

jn+1
i+1 − jn+1

i

∆f

+ ιni,B1ιni,B<0

jn+1
i − jn+1

i−1

∆f

+
σ2f2i
2

jn+1
i+1 + jn+1

i−1 − 2jn+1
i

(∆f)2

• Collecting terms:

(
−
ιni,B1ιni,B<0

∆f
+

1

2

σ2f2i
(∆f)2

)
jn+1
i−1 +

(
−
ιni,F1ιni,F>0

∆f
+
ιni,B1ιni,B<0

∆f
−

σ2f2i
(∆f)2

)
jn+1
i

+

(
ιni,F1ιni,F>0

∆f
+

1

2

σ2f2i
(∆f)2

)
jn+1
i+1

207



• Define:

ξi =−
ιni,B1ιni,B<0

∆f
+

1

2

σ2f2i
(∆f)2

βi =−
ιni,F1ιni,F>0

∆f
+
ιni,B1ιni,B<0

∆f
−

σ2f2i
(∆f)2

ζi =
ιni,F1ιni,F>0

∆f
+

1

2

σ2f2i
(∆f)2

• In matrix notation,

jn+1 − jn

∆
+ diag((r + δ)1− gn)jn+1 = Ψn +Cjn+1

where,

j,1,g,Ψn, jn+1 ∈ RI×1

C ∈ RI×I

diag((r + δ)1− gn) ∈ RI×I

• Matrix C is the discrete-space approximation of the infinitesimal generator C.

• System can also be written as:

Bnjn+1 = bn

where,

Bn = diag
((

1

∆
+ r + δ

)
1− gn

)
−Cn

bn = Ψn +
1

∆
jn
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• The HJBVI which takes into account the default option can be expressed in the

standard form of a linear complementarity problem (LCP):

jn+1′(Bnjn+1 + (−bn)) = 0

jn+1 ≥ 0

Bnjn+1 + (−bn) ≥ 0

Boundary Conditions

• Assuming we’ve solved for the equilibrium transition rate matrix, C, take as given

the default threshold, fD ∈ (f1, fI), where we assume that the state grid is suffi-

ciently constructed so that fD lies in the interior.

• We have the following state constraint at the lower boundary (there is no negative

drift in df):

f ≥ f1 = 0 ⇒ ι1,B = 0

Also, f1 = 0 ⇒ ι1,F = 0. Therefore,

ξ1 =0

β1 =0

ζ1 =0

• A firm entering default cannot resume operations or accumulate more debt:

f = fD,∀t⇒
[
ξD βD ζD

]
= 0
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Solution with Trade and No Market Segmentation

• Upwind scheme unchanged. Unsecured debt issuance policy only affects drift.

Discretized HJB Equation

• Let Ψn
i = A− θ(A− cufi − csα)− Φ(gni )− (cu +mu)fi − csα + pni b

n
i + α(gni − δ).

• Given time step ∆, the discretized HJB equation in the continuation is given by:

jn+1
i − jni

∆
+ (r − gni + δ)jn+1

i =Ψn
i + bni ∂F j

n+1
i + ιni,F1ιni,F>0∂F j

n+1
i

+ ιni,B1ιni,B<0∂Bj
n+1
i +

1

2
σ2f2i jff

=Ψn
i + bni

jn+1
i+1 − jn+1

i

∆f
+ ιni,F1ιni,F>0

jn+1
i+1 − jn+1

i

∆f

+ ιni,B1ιni,B<0

jn+1
i − jn+1

i−1

∆f

+
σ2f2i
2

jn+1
i+1 + jn+1

i−1 − 2jn+1
i

(∆f)2

• Collecting terms:

(
−
ιni,B1ιni,B<0

∆f
+

1

2

σ2f2i
(∆f)2

)
jn+1
i−1 +(

−
bni
∆f

−
ιni,F1ιni,F>0

∆f
+
ιni,B1ιni,B<0

∆f
−

σ2f2i
(∆f)2

)
jn+1
i +(

bni
∆f

+
ιni,F1ιni,F>0

∆f
+

1

2

σ2f2i
(∆f)2

)
jn+1
i+1
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• Define:

ξi =−
ιni,B1ιni,B<0

∆f
+

1

2

σ2f2i
(∆f)2

βi =−
bni
∆f

−
ιni,F1ιni,F>0

∆f
+
ιni,B1ιni,B<0

∆f
−

σ2f2i
(∆f)2

ζi =
bni
∆f

+
ιni,F1ιni,F>0

∆f
+

1

2

σ2f2i
(∆f)2

Boundary Conditions

– We have the following state constraint at the lower boundary (there is no nega-

tive drift in df):

f ≥ f1 = 0 ⇒ ι1,B = 0

However, unlike before, at f1 = 0 ⇒ ι1,F = b∗1 > 0. Therefore,

ξ1 =0

β1 =−
bn1
∆f

ζ1 =
bn1
∆f

– As before, a firm entering default cannot resume operations or accumulate more

debt:

f = fD,∀t⇒
[
ξD βD ζD

]
= 0
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Finite difference method for debt price

• With a dividend restriction, it is no longer the case that the no-trade equity value is

equal to the equity value with trade.

• As a result, the debt price needs to be solved for taking equity’s optimal policies as

given.

• The HJB for debt in the crisis region is:

(r +mu + λ)p =cu +mu

+ [b− (g +mu − δ − σ2)f ]pf +
1

2
σ2f2pff + λp̄

• Then given time step ∆, the discretized HJB equation in the continuation is given

by:

pn+1
i − pni

∆
+ (r +mu + λ)pn+1

i = cu +mu + λp̄+ [bni − (gni +mu − δ − σ2)fi]∂p
n+1
i

+
1

2
σ2f2i ∂

2pn+1
i

= cu +mu + λp̄

+ [bni − (gni +mu − δ − σ2)fi]
pn+1
i+1 − pn+1

i

∆f

+
σ2f2i
2

pn+1
i+1 + pn+1

i−1 − 2pn+1
i

(∆f)2

• Collecting terms:

(
σ2f2i

2(∆f)2

)
pn+1
i−1 +

(
−
[bni − (gni +mu − δ − σ2)fi]

∆f
−

σ2f2i
(∆f)2

)
pn+1
i

+

(
[bni − (gni +mu − δ − σ2)fi]

∆f
+

σ2f2i
2(∆f)2

)
pn+1
i+1
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• Denote:

ξ
p
i =

σ2f2i
2(∆f)2

β
p
i = −

[bni − (gni +mu − δ − σ2)fi]

∆f
−

σ2f2i
(∆f)2

ζ
p
i =

[bni − (gni +mu − δ − σ2)fi]

∆f
+

σ2f2i
2(∆f)2

• In matrix notation,

pn+1 − pn

∆
+ (r +mu + λ)pn+1 = (cu +mu)1+ λp̄+Cppn+1

where,

p, p̄,1 ∈ RI×1

Cp ∈ RI×I

• Rewrite system:

pn+1

∆
+ (r +mu + λ)pn+1 −Cppn+1 = (cu +mu)1+ λp̄+

1

∆
pn(

diag
(
1

∆
+ (r +mu + λ)

)
−Cp

)
pn+1 = (cu +mu)1+ λp̄+

1

∆
pn

Bp,npn+1 = bp,n
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where,

Bp,n = diag
(
1

∆
+ (r +mu + λ)

)
−Cp

bp,n = (cu +mu)1+ λp̄+
1

∆
pn

• In the standard form of a LCP:

pn+1′(Bp,npn+1 + (−bp,n)) = 0

pn+1 ≥ 0

Bp,npn+1 + (−bp,n) ≥ 0

Boundary Conditions

• A firm entering default cannot resume operations or accumulate more debt:

f = fD,∀t⇒
[
ξ
p
D β

p
D ζ

p
D

]
= 0

where, fD corresponds to the region of the state space where the firm is defaulted.

Solution for Joint Equity and Short-Term Debt Value Function and Invest-

ment Policy at No-Debt Boundary

• The HJB in the continuation region for the no-debt, no-trade equilibrium is:

0 =max
g

{
− (r − g + δ)j + A− θ(A− csα)− Φ(g)− csα + α(g − δ)

}
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• FOC with respect to investment policy:

Φ′(g) = j + α

⇒ j = Φ′(g)− α

• Joint equity and short-term debt value function for a firm that never takes on debt

(and so does not default):

j = E

 ∞∫
0

exp(−(r − g∗ + δ)t)[[A− θ(A− csα)− Φ(g∗)− csα + α (g∗ − δ)] dt+ ασdZt]


=

∞∫
0

exp(−(r − g∗ + δ)t) [A− θ(A− csα)− Φ(g∗)− csα + α (g∗ − δ)] dt

=
A− θ(A− csα)− Φ(g∗)− csα + α (g∗ − δ)

r − g∗ + δ

• Combining these two equations, we have:

r + δ = g∗ +
1

Φ′(g∗)− α
[A− θ(A− csα)− Φ(g∗)− csα + α (g∗ − δ)]

• Since Φ′(g∗)−α = γg∗−α is strictly increasing in g∗ and g∗ > α/γ, RHS is increasing

in g∗ if:

r + δ > g∗ > α/γ ⇒ Φ(r + δ) > Ψ > Φ(α/γ)A− θ(A− csα)− Φ(g∗)− csα

+α (g∗ − δ) > 0

(1− θ)A− ((1− θ)cs + δ)α > Φ(g∗)− αg∗
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• Then, g∗ ∈ (α/γ, r + δ):

Φ(α/γ)− α(α/γ) < (1− θ)A− ((1− θ)cs + δ)α < Φ(r + δ)− α(r + δ)

• Rearrange terms and express the equation as a quadratic function in g∗:

−γg∗2 + 2γ(r + δ)g∗ + 2α[(1− θ)cs − r]− 2(1− θ)A = 0

• Then, we choose the smaller root so that g∗ ∈ (α/γ, r + δ):

g∗ =
−2γ(r + δ) +

√
(2γ(r + δ))2 − 4(−γ)(2α[(1− θ)cs − r]− 2(1− θ)A)

−2γ

=
γ(r + δ)−

√
(γ(r + δ))2 + 2γ(α[(1− θ)cs − r]− (1− θ)A)

γ

No-Debt Boundary Optimal Investment in Crisis

• The HJB in the continuation region for the no-debt, no-trade equilibrium with crisis

dynamics is:

0 =max
g

{
− (r − g + δ)j + ηA− θ(ηA− csα)− Φ(g)− csα

+ (p∗s − 1)α + p∗sα(g − δ) + λ(j̄ − j)

}

where j̄ is the pre-shock joint equity and short-term debt value.

• FOC with respect to investment policy:

Φ′(g) = j + p∗sα

⇒ j = Φ′(g)− p∗sα = γg − p∗sα
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• The joint equity and short-term debt value function for a firm that never takes on

debt (and so does not default):

j∗ =
ηA− θ(ηA− csα)− Φ(g∗)− csα + (p∗s − 1)α + p∗sα(g

∗ − δ) + λj̄

r − g∗ + δ + λ

• Combining these two equations, we have:

r + δ + λ = g∗ +
1

Φ′(g∗)− p∗sα
[ηA− θ(ηA− csα)− Φ(g∗)− csα

+ (p∗s − 1)α + p∗sα(g
∗ − δ) + λj̄]

• As a quadratic function in g∗,

r + δ + λ = g∗ +
1

γg∗ − p∗sα
[ηA− θ(ηA− csα)

− 1

2
γg∗2 − csα + (p∗s − 1)α

+ p∗sα(g
∗ − δ) + λj̄]

=
1

γg∗ − p∗sα
[γg∗2 − g∗p∗sα + ηA− θ(ηA− csα)− 1

2
γg∗2 − csα

+ (p∗s − 1)α + p∗sα(g
∗ − δ) + λj̄]

=
1
2γg

∗2 + ηA− θ(ηA− csα)− csα + (p∗s − 1)α− p∗sαδ + λj̄

γg∗ − p∗sα

(r + δ + λ)(γg∗ − p∗sα) =
1

2
γg∗2 + ηA− θ(ηA− csα)− csα + (p∗s − 1)α− p∗sαδ + λj̄

⇒ 0 = −γg∗2 + 2γ(r + δ + λ)g∗

− 2p∗sα(r + λ)− 2[ηA− θ(ηA− csα)− csα

+ (p∗s − 1)α + λj̄)]

0 = −γg∗2 + 2γ(r + δ + λ)g∗

− 2α[p∗s(r + λ)− (1− θ)cs + (p∗s − 1)]− 2[(1− θ)ηA+ λj̄)]
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• Choose smaller root:

g∗ =

−2γ(r + δ + λ) +

√√√√√√√√√
(2γ(r + δ + λ))2

−4(−γ)(−2α[p∗s(r + λ) + (1− θ)cs + (p∗s − 1)]

−2[(1− θ)ηA+ λj̄)])

−2γ

=

γ(r + δ + λ)−

√√√√√√√√√
(γ(r + δ + λ))2

−2γ(α[p∗s(r + λ) + (1− θ)cs + (p∗s − 1)]

+[(1− θ)ηA+ λj̄)])

γ

Primal-Dual Interior-Point Method

• To solve extensions to the base model with policy constraints, I marry an interior-

point method to solve the resultant nonlinear optimization problem with an upwind

finite differences method to solve the HJB and a linear complementary method to

solve for the optimal stopping time (i.e. default).

• Below is the formulation for the nonlinear convex optimization problem featuring a

dividend restriction, which both policies must satisfy.

• Define:

h(bu, g, ω) ≡ −(r − g + δ + λ)j + π(bu, g) + λj̄ + [bu − (g − δ +mu)f ]jf +
1

2
σ2f2jff

B(bu, g, ω) ≡ −h(bu, g, ω)− ω log(−π(bu, g))

Note the change in sign on the objective B(bu, g, ω). This is because I’m solving the

maximization problem as minimization.
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• Compute the gradient of the barrier function B(bu, g, ω):

∇B(bu, g, ω) = −∇h(bu, g, ω)− ω
1

π(bu, g)
∇π(bu, g) ∂B

∂bu

∂B
∂g

 = −

 ∂h
∂bu

∂h
∂g

− ω
1

π(bu, g)

 ∂π
∂bu

∂π
∂g


= −

 πbu + jf

j + πg − fjf

− ω
1

π(bu, g)

 p

−Φ′(g) + p∗sα


= −

 p+ jf

j − Φ′(g) + p∗sα− fjf

− ω
1

π(bu, g)

 p

−Φ′(g) + p∗sα


= −

 p+ jf

j − gγ + p∗sα− fjf

− ω
1

π(bu, g)

 p

−gγ + p∗sα



3.6.14 Numerical Results for Model with Short-Term Debt

• Associated with Section 3.4.
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Initial Distribution

Figure 3.13: Initial Distribution of Firms
The figure plots the initial distribution of unsecured debt to capital. It is proxied by the variable

debt_capital from the Financial Ratios Suite by Wharton WRDS based on Compustat data for rated
firms. Ratings information is obtained from the Mergent FISD database. Data is winsorized at the 1% and
99% levels. The numerator of debt_capital is computed as the sum of accounts payable (ap), total debt in
current liabilities (dlc), and total long-term debt (dltt). The denominator is computed as the sum of debt,
and the sum of total common equity (ceq) and preferred stock (pstkrv, pstkl, pstk). Results are robust to
using the variable debt_assets, which is computed as the ratio of total liabilities (ltq) to total assets (at).
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Parameters

Baseline Crisis Crisis Crisis Crisis
No. Int. Unsec. Int. Sec. Int. Div. Rest.

A 0.24 η × 0.24 η × 0.24 η × 0.24 η × 0.24

r(e) 0.05 0.05 0.05 0.05 0.05
r(d) r(e) r(e) r(e) − 0.02 r(e) r(e) − 0.02
δ 0.1 0.1 0.1 0.1 0.1
mu 0.1 0.1 0.1 0.1 0.1
θ 0.35 0.35 0.35 0.35 0.35
α 0.20 0.20 0.20 0.20 0.20
σ 0.31 0.31 0.31 0.31 0.31
γ 16 16 16 16 16
η 1 0.95 0.95 0.95 0.95
λ 0 0.50 0.50 0.50 0.50
p∗s 1 1 1 1.02 1

Table 3.3: Parameters for Numerical Estimation

3.6.15 Dividend and Debt Repurchase Restrictions with Unsecured Debt

Intervention

Figure 3.14 shows that the dividend restriction binds over the same region for both

economies with and without unsecured debt repurchase restrictions. Unsurprisingly, pay-

outs are far lower in the case with dividend restrictions.

Figure 3.15 shows firms unsecured debt issuance policies. Recall that the economies fea-

turing dividend restrictions also benefit from unsecured debt intervention. In spite of this,

firms in these economies do not choose to issue unsecured debt while the dividend restric-

tion binds. Unable to make payouts, firms either increase investment, repurchase unse-

cured debt, or do both.

Figure 3.16 shows that dividend restrictions result in lower joint valuations for equity

and short-term debt, particularly for the region of the state space where the dividend con-

straint binds. In fact, the difference between unconstrained and constrained equity prices
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Figure 3.14: Dividend Restriction Binds for Large Portion of State Space
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Figure 3.15: Debt Repurchase Motive With Dividend Restriction
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(a) Levels (b) Relative to No Shock

Figure 3.16: Dividend Restriction Decreases Equity Value

increases as distance to the dividend restriction boundary increases. This is consistent

with the monotonic pattern implied by the difference in dividends shown in Figure 3.14.

The combination of lower equity prices, as well as non-positive unsecured debt issuance,

suggest that firms would not voluntarily participate in credit programs featuring dividend

and debt repurchase restrictions, which can explain the low uptake of the MSLP (which

had less than a 3% utilization rate).

As intended, dividend restrictions sharply boost investment rates, as shown in Figure

3.17. In particular, a restriction on unsecured debt repurchases leads to sizeable increase in

investment. This reinforces the debt repurchase motive for firms, as seen in Figure 3.15.

Echoing the differences in investment policy, the expected evolution of average invest-

ment rates is higher when dividend restrictions are in place, more so when the firm cannot

repurchase unsecured debt. This is shown in Figure 3.18.

While equity prices are shown to fall in Figure 3.16, Figure 3.19 shows that unsecured

debt price rises with dividend restrictions. With positive investment rates and no unse-

cured debt issuance, or even repurchases, the firm deleverages, reducing default risk and

improving debt prices.
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(a) Levels (b) Relative to No Shock

Figure 3.17: Dividend Restriction Sharply Increases Investment Rates

Figure 3.20 shows that dividend restrictions has no impact on the firm’s default thresh-

old relative to no intervention.

Figure 3.21 shows that the evolution of expected default rates are eventually lower with

dividend restrictions. This is because the restriction forces the firm to grow larger (and

hence, hold a smaller proportion of debt to assets). Additionally, when there are no re-

strictions on unsecured debt repurchases in place, retiring debt results in lower leverage

and lowers default risk.

Figure 3.23 shows a stark contrast in the distributions of surviving firms in the economies

with and without dividend restrictions. Dividend restrictions cause firms to move away

from the default boundary as a result of higher investment. This force is compounded

when the firm can repurchase unsecured debt.

Figure 3.23 reinforces these results and gives a sense of how lower of a leverage ratio sur-

viving firms have with dividend restrictions.

While it may be surprising that average expected equity value increases with dividend

restrictions, as shown in Figure 3.24, this is because more firms are moving away faster

from the boundary than those which are defaulting. This force is strong enough to coun-
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Figure 3.18: Expected Evolution of Investment Rates Also Far Higher
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(a) Levels (b) Relative to No Shock

Figure 3.19: Dividend Restriction Increases Unsecured Debt Price

(a) Levels (b) Relative to No Shock

Figure 3.20: Dividend Restriction has No Impact on Default Threshold
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Figure 3.21: Dividend Restriction Sharply Reduces Long-Run Defaults
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Figure 3.22: Surviving Firms Have Far Lower Leverage With Dividend Restriction; Even
Less Without Debt Repurchase Restriction
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Figure 3.23: Surviving Firms Have Far Lower Leverage With Dividend Restriction; Even
Less Without Debt Repurchase Restriction
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Figure 3.24: Expected Average Equity Values Increase Over Time With Restrictions
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teract the relatively lower equity prices from the dividend restriction binding more tightly.
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